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Introduction

These notes are based on the course “General Relativity” given by Dr. P. D. D’Eath in
Cambridge in the Lent Term 1998. These typeset notes are totally unconnected with
Dr. D’Eath. The recommended books for this course are discussed in the bibliography.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/


http://www.istari.ucam.org/maths/
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Chapter 1

Outline of the theory

1.1 Curved spaces

Consider a two dimensional curved surface in Euclid®dn for instance with the
defining equation: = z(z,y). We distinguish between the extrinsic and intrinsic
properties of such a surface.

The extrinsic properties describe the relation between the surface and the surround-
ing 3 dimensional space, for instance the extrinsic curvatuge=f z(x,y) is not a
plane.

The intrinsic properties refer to quantities such as distance, angle and area measured
within the surface. For instance, the Euclidean metsit = dz? + dy? + dz? gives
the distance between nearby points in the surface as

d 9z .\’
ds? = dz? + dy? + —de + —Zdy .
Ox dy

The surface has an intrinsic Riemannian (positive definite) metric of the form
ds? = A(z,y) dz? + 2B(x, y) dedy + C(z, y) dy>.

The metric at a poinP on the surface describes the geometry (distances, angles,
etc.) on the plane tangent to the surfac&at

We have the freedom to change co-ordinates:, f — 2’/ (x,y), v’ (z,y) then the
metric becomes

ds2 — A/(LL‘/,y/) d:E/2 JrQB/(x/,y') dz’dy/JrC/(:L",y’) dy/27

where A’, B’ andC’ can be calculated. The geometry of the surface is the same
however the co-ordinate lines are painted on — as an exampl&®eaith the metric
ds? = da? + dy? = dr? + r2 d6>.

The cylinder inR3, 22 + y? = R? has the intrinsic metrids? = dz? + R? d¢?
(using cylindrical polars). We can locally make the co-ordinate change:, y = R¢
and we get the flat space metric. The intrinsic geometry of the cylinder is that of a
plane, although the cylinder has extrinsic curvature.

We can do the same sort of thing with the 2-sphere of ragdinsR®. This has the
intrinsic metricds® = a? (d6? + sin® 0 d¢?) (where¢ and¢ are the usual spherical

1



2 CHAPTER 1. OUTLINE OF THE THEORY

polars). Letting- = af we get the metric

ds? = dr? + sin® r dg?
a
4

~dr? + (r2 — ;—2 +.. > d¢? near the North pole.
a

These extra terms are the effects of the intrinsic curvature of the sphere, which is

K=a2
The circumference of the circle at constarns

7,3
027'('(7'(3@24’) :.%(197

and the area within the circle is

4
A=mr?— 71'7:1 —|—-~-:/Cdr.

We note that

(1.1)

1.1.1 Geodesics

These are the generalisation of straight lines in a flat space. If points are not too far
apart we can find the geodesidy extremizing the Iengtm ds.

Geodesics are intrinsic to the surface (they depend on the metric). As an example,
great circles on the sphere are geodesics.

We can find the intrinsic curvature of any surface at a pdinby drawing all
geodesics fronP out to a distance. We evaluate the circumferenc&r) and thus
areaA(r) and use[(1]1) to define the curvatuteat that point.K can be negative (for
instance at a saddle).

Let £(r) (the geodesic deviation) be the distance between the ends of two nearby
geodesics of length from a pointP. On 52, £(r) = asin Zd¢ and we note thag
satisfies th@eodesic deviation equation

a2¢
o2 = K¢

A similar equation holds in any curved space. Thu&(if> 0 two neighbouring
geodesics recross (eventually) Hf = 0 the geodesics are straight lines andkif< 0
the geodesics separate exponentially.

1.2 The principle of equivalence

1.2.1 Uniqueness of free fall

Consider the (Newtonian) dynamics of a single particle under gravity,

Mx =-MVo,
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where M, the inertial mass, equalk/, the passive gravitational mass. Motion
under gravity is independent of mass and composition.

If a gravitational fieldg = —V ¢ is constant in space and time then all particles have
a constant acceleratien= g superimposed on the gravity-free motien= x’ + %at2,
wherex’ could be regarded as the position in an inertial frame with no gravitational
field. Conversely, uniform acceleratianapplied to the co-ordinates gives the illusion
of a uniform gravitational fielch. Uniform gravitational fields are “fictitious” — they
can be eliminated by a change of co-ordinates.

In anygravitational field, if an observer falls freely in a non-rotating Iaboratofﬂ, he
sees objects in the laboratory moving essentially on straight lines — the local gravita-
tional field has been eliminated.

A freely falling non-rotating laboratory provideslacal inertial frameallowing
inertial co-ordinatesx, t) to be set up near the laboratory.

There are limitations on local inertial frames. Nearby particlesatdx + £ have
relative tidal acceleration

d2£i p
W = —¢,z‘jf .

In a “true” non-uniform gravitational field tidal forces cannot be eliminated by
co-ordinate transforms and there are many different local inertial frames with relative
accelerations.

1.2.2 Equivalence principle

All local inertial frames are equivalent for the performance of all ex-
periments. All non-gravitational laws of physics take their special-
relativistic forms in local inertial frames (by the usual arguments of spe-
cial relativity).

We can thus do things like fluid dynamics, quantum mechanics and electromagnetic
theory in a gravitational field by using the special-relativistic laws and local inertial
frames.

The speed of light is therefore and distances and times are measured by the
Minkowski metricds? = da? + dy? + dz? — c2dt?.

1.2.3 Consequences for light propagation

The obvious consequence is that light can be deflected by gravitational fields (just like
ordinary matter) because light moves in straight lines in local inertial frames which
accelerate with respect to global co-ordinates.

There is also a gravitational frequency shift. Consider a lift of hefigitcelerating
downwards at a ratg with respect to the earth. The lift has spéedtt = 0 and a
light ray of frequency is emitted from the base of the lift at= 0. At¢ = hc™! the
light ray is at the top of the lift and has an observed frequenaythe lift frame (by
the equivalence principle). The lift then has spélcédand so the light has a Doppler

shifted frequency ( — i—ﬁ?) measured from the earth frame. Note that
dv __do w2

v c?

IMore properly, (s)he. Sex will be assigned at random.
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The same thing happens for light emitted in the other direﬁion.
We can integratg (1].2) to find

v <¢0—¢>
— = exp 5
140 &

for a photon emitted ab, with a frequency,, and observed with a frequencyat
P.

We expect that clocks in a potential well will appear to go slow (gravitational time
dilation). This is observed for spectral lines in some white dwarf stars, but is not a big
effect.

1.2.4 Special relativity and gravitation

Can we fix up special relativity so that it holds over an extended region containing
gravitational fields?

Gravitational time dilation implies that a good clock at rest measures atfjme
t. exp %, where(z., y., z¢, t.) are special relativistic co-ordinates. We can only make
the theory Lorentz invariant if all measurements obey

ds?, = exp (¢2> ds?.
c

This is completely equivalent to a special type of curved spacetime theatrG R)
with metric

ds? = exp (ﬁ) (dx2 +dy? +dz? — chtz) ,
C
and this is a more natural viewpoint. We see that attempts at combining special
relativity and Newtonian gravity lead naturally to curved spacetimes.

1.3 Outline of general relativity

Our arguments have led us to a curved spacetime with four co-ordin&tés =
1...4) and a metriels? = g4, dz® dz?, whereg,;, = g», depends on position.

At any eventP in spacetime one can find a local inertial frame — one can make a
co-ordinate change such that

Jab = Nab =
2

o O O
o o= O
o= O o

o O O

—C

nap 1S theMinkowski metriqhere defined oppositely to Electrodynamics).

The metricg,;, has the canonical form + +— at each point.

Recall that intervals witkds? < 0 aretimelikg intervals withds? > 0 arespacelike
and intervals withls? = 0 arenull.

Ordinary massive bodies move on timelike patfis\) with %”’ timelike and light
travels on null paths withZ" null.

2This aspect of the equivalence principle is confirmed by the Pound-Rebka experiment.
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We also have thelocks hypothesighe metric determines the time measured by a
standard clock moving on a timelike path(\) from eventA to eventB:

1 B
7':7/ |ds| .
¢Ja

Thelength hypothesiis that standard rods measure the lengjth

As for the equations of motion, we know that particles move on essentially straight
lines in local inertial frames and this suggests geodesic hypothesishat freely
falling particles move on geodesics. The path of a particle moving fdota B ex-

tremizes
B
/ |ds]| .
A

We guess that massive particles move on timelike geodesiscs and that massless
particles move on null geodesics.

1.4 Static spacetime and Newtonian gravity

We compare general relativity with Newtonian gravity for low speeds and weak fields.

1.4.1 Static metrics

Consider a time independent gravitational field produced by a system of bodies at rest.
We have co-ordinates® = (z¢,t) (i = 1,2, 3) and the metric tensgy,; is a function
of thez? alone. This is a stationary metric, and allows us to synchronize clocks.

Observer 1 at:i bounces light rays off observer 2 at
xh. Since the metric is independent of time the photon
pathsz?()\) in space, and hence the tihelapsed must

be the same for each bounce.

Observer 1 sees the photon returning regularly after a
proper time interval; and observer 2 sees the pho-
ton returning regularly after a proper time interval
T9. Thus observer 2 can measure time by defining
ty = %TQ + const. Observers at all points in space
can do the same thing — ensure that time passes at the
same rate.

However, can we actually synchronize the origin of time for different observers?
We can do this (as shown) if the metricsatic

ds? = gij(z") da’ da? — A(z®) dt?.

In this case the metric is symmetric under time reversal and so the time reverse of
a photon path is also a photon path.

If the field is produced by matter at rest then the matter distribution is invariant
under time reversal and so the metric should also be symmetric — i.e. static.

Stationary metrics are produced by steadily moving distributions of matter — for
example rotating stars.

From gravitational time dilation we see tht= ¢2 exp (i—‘f)
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1.4.2 Newtonian limit
Take a static metric and a weak field, thalig%’ small. Thend ~ ¢ + 2¢ and we
expecty;; = 0;0(%).

Consider a slowly moving particle withf = 4% such tha? < ¢2. We thus have

ds? = ggp dz dab = (u2 +0W*S)—c?—20+ O(f—j)) dt> on the path.

C

/|ds|%/c2+¢—%v2dt

and the Euler-Lagrange equations yiéfg = —2¢..

Thus




Chapter 2

Metric differential geometry

We need a formulation of physics valid in arbitrary co-ordinate systems. Physical quan-
tities must have existence independent of particular co-ordinates being used — hence
must transform properly under co-ordinate transforms. They should be represented by
tensors.

2.1 Basic tensors

Consider the co-ordinate changé — =% (z) on spacetime, with inverse® —

(2.
Define
o Ox¢
pa - 8.’1/'0’ )
ox?
pg’ :a a "
i

Note thatp?' pb, = 222 92" _ 5 b by using the chain rule, where

oz Hga’
5 b _ 1 a = b
“ 0 a#b
is the Kronecker delta.

Under repeated co-ordinate change— = — 2", we have the group property,
using the chain rule,

Pa Par =P -
A covariant tensoof n'" rank, with components;, ..., with respect to co-ordinates
%, at a pointP has transformation law

b
Tyop = Torr = pg’ o 'pb/Ta---b~

Note that the group property shows that the compon&pts,, are uniquely defined
with respect to any co-ordinate system if they are fixed in one systerhis provides
a way of constructing all tensors.
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A contravariant tensof®-® transforms as

Tt =T

a

Similarly for mixed tensorsfor example
T, - T," = popi T,

It is important to keep the order of the indices the same.

A scalaris a tensor with no indices, invariant under co-ordinate change, for exam-
ple the mass of a patrticle.

A scalar fieldg(z?) is a scalar function for example pressure or particle density in
a fluid.

A covariant vector fieldv, () is a vector function of position. For example if
¢(z?) is a scalar field then, = ¢ , := gji is a covariant vector field, since

06 02 0¢

T 9z 9z dza’

Vq!

A further example is a pressure gradientin a fluid.
Suppose a curve®(\) parametrised by, has a tangent af* = % at the point
P. v is acontravariant vector This follows because

o da® da® da®
Todx dat A

,Ua

dz®
dr?

Other examples are thevelocity of an observery® =
time.

wherer is proper

2.1.1 Examples of tensors

e The Kronecker delta is a tensor:
papy 0" = plpl =6,".
e The metricg,, is a tensor, since the invariati? can be written

ox® du® Oxb

v a’ 1.0
EIeT &Tb'dx = gyprdx® dx

ds? = gabdx“dxb = Gab

Wherega’b’ = gapr/Pg/-

Further examples will be provided by the curvature and energy momentum tensors.

2.1.2 Operations preserving tensor property
e Addition: Ty, + W, is a tensor ifl,;, andWW,;, are tensors.
e Scalar multiplication:fT, is a tensor ifl,; is a tensor.

e Outer productsv®Ty,. transforms as

’ ’
v Ty = po pg,pglvaTbc.
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e Contraction of one covariant with one contravariant index1'if, is a tensor,
definev. = 7% ., transforming as

ac!
a/
Ve! =T a'c!
_ . a. b ¢ T _5bcTa
= DPq PaPcrd be = 0q Perd e

_ (& a _ C
=po T . = Pove.

e Interchange of indicesTy,;, (a tensor)— T}, which is also a tensor. Similarly
symmetrisation and anti-symmetrisation

1
(Tab + Tba)

Tiap) = B
1
T[ab] = E(Tab - Tba)

The above can readily be generalised to more indices.

2.1.3 Quotient theorem

Supposd/* = TV} is a vector for all vector¥,. Thenp® U® = p® TV, and
U =pe U =T""Vy =TV p} V.

Subtracting these last two yields,

(T*Vph, —p* TV, =0 ¥V, and so
T“/b/pg, = png“b.

Multiplying both sides by yields
Ta/b/plb)/pg/ _ Ta’b,(;b/C, _ Talcl _ pglpZITab'

HenceT? is a tensor.

2.1.4 Inverse metric tensor

Define g?*(= ¢**) to be the matrix inverse gf,s, i.e. such thag,.g®® = §,°. Now
for any vector//® can define a vectol/, = ¢,,V'*. Note that there is a one to one
correspondance betweél andV ® sinceg,,; is non-singular and so we can construct
all vectorsl, in this way. The quotient theorem implies thgt is a tensor.

2.1.5 Raising and lowering of indices

We can usg/®® to raise any covariant index. For examflg, gives a tensoff®, =
g*°T. if the first index is raised. Similarly we can ugg, to lower any index, for
examplell @ givesW,* = g,.W <. The index ordering must be carefully maintained.

Raising and lowering are inverse operations. One normally regard€,g.gl’, °,
T4 andT< as different versions of the same object.
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2.1.6 Partial derivatives of tensors

Partial derivatives of tensors are not tensors in general. For example suppsse

vector field. Then, = gg‘c—”fa‘iva and so

Ovgr 022 n 8z 9z° v,
02" 0x70x? " 929 9z Oxb

Ov .
# pph o ——  ingeneral.

The only exception i® , as mentioned earlier.

2.2 Lengths and geodesics

The squared magnitude of a vectgror v® is defined to be, v = v,vg* = vl g,
and is invariant under co-ordinate transformations.
It can be evaluated in a local inertial frame whegg = 745.

spacelike ifv,v®* > 0,
v 1S < null if v,v® =0,
timelike if v,v* < 0.
As before, ifv® is spacelike we can find a Lorentz transformation in the local
inertial frame making® = (v’,0). Thenu,v® = (v1)2 + (v2)2 + (v3)2 = |v|?, which
is the physically measured squared magnitude*dh that frame. Ifv® is timelike we
can make® = (0,v*) and thery,v® = —c?(v*)2.

2.3 Angles between vectors

Suppose that® andw® are both spacelike and that we have chosen a local inertial
frame such that® = (v%,0), w® = (w',0). Then the angl® betweenv® andw’® is
defined by

cosf = YW Cartesian notation in LIF, or
[v] [w]
V| |W
(gapv@w?)

= invariant definition.
(vdvd) 1/2 (wcwc)l/Z

2.4 Lengths of curves
If 2*(\) describes a spacelike curyewhich is parameterised by (i.e. if v* = %
is spacelike along), the length ofy from A to B is

1/2
dz® dx
/ ds-/ (gabd)\ d)\> dA

If z*(\) gives a timelike curve (i.e. v® = ﬁ is timelike alongy), then the time
elapsed along from A to B is

1 (B 1 (B dz® dz? 1/2
2 s = - P Y
c/A|5| c/A<gbd)\d)\)
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2.5 Geodesics

A geodesicy from A to B extremises

B B
o=
A A

wherez®(\) = %, subject to fixed endpoints:*(\;) are the co-ordinates of, and
2%(\2) are the co-ordinates d.
For example consider a spacelike geodesic. Then

dz® da? 1/2

b N A

oL _ gabftb
0i* L

oL Gbe,a®liC
oz 2L

Using the Euler-Lagrange equations
d (oL _oL _,
dX \ 9i® oxo
dL b

1
L71 |:gabjb + (gab,c - 29bc,a)j7bj36:| - Lizagabi .

gives

Using our freedom to reparametrise the curve we can chdese, the distance along
~. ThenL = 1 and4% = 0 alongy. Therefore

. 1 b
0= gapi” + (Gav,e = 5 90e,0)3"2°
.. 1 b
= gabxb + 7(gab,c + Gac,p — gcb,a)xbzc-

2

Raising index: yields thegeodesic equation

d?z® a Lﬂdx“ —0
ds? be o

ds ds ’

where

a | 1 ad
{bc} = 59" (9pd.c + godb — Goe.a)-

The same equation is obtained for timelike geodesics and we have the equations of
motion for a test particle in a gravitational field.

The expressior{ o } involves the “derivatives of gravitational potential” and corre-
sponds tap ; in Newtonian gravity. It is possible to rederive Newtonian dynamics in
this way — see later.

The geodesic equation is a second order ordinary differential equation and so a
geodesic is uniquely specified once the starting pefrid) and an initial tangent di-
rectionz®(0) are chosen.
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2.6 Covariant differentiation and Christoffel symbols

Physical laws involve partial derivatives. We need a generalisafipof 0, := a%
which preserves tensorial properties. We want the covariant derivative operator to
e keepV,.o = 0,¢ for scalar fieldsp, sinced, ¢ is already a covariant vector field.

e look like Vv, = Opv, — I', v acting on covariant vector fields, wherg, is a
(non-tensorial) collection of? numbers to be constructed out of the metric and
its first derivatives, and-I'f v, is designed to cancel out the bad transformation
properties ob,v,, .

e commute with addition:

vd(Tambd...c + Ua...bdmc) _ vdT + vdU

e obey the Leibniz rule
Vo (T U™ ) = (VT YU +T (VaU™ )

e satisfyVyga, = 0, Vag®* = 0 andVvy6%, = 0.

e commute with index contraction:

These properties imply that, commutes with the operations of raising/lowering
indices.

We want to find th&"’s, which we will do using the zero covariant derivative of the
metric. First note that for any covariant vector fieldsandvy,

Vi(uap) = eV avp + vpVaua
= 0a(uaqup) — TGptave — TG, UcVp.
Now any tensor field,;, can be built by adding tensors of the foinw,, so using

linearity
vdTab = adTab - Ffijac - Féach-

for any tensoff,;,. We apply this to the metric tensgg;, to get

vdgab = Yab,d — F(Cjbgac - F(ciagcb =0. (21)

Permuting the indices cyclically, we get

Vagbd = gvd,a — I'aagve — I'gpgea = 0. (2.2)
Vigda = 9da,b — Fgagdc - nggca =0. (23)
We make the further simplifying assumption of symmefry; = I'; . Now take
(23)- (2.3) - (2.2) and adjust the indices to get
2Fg{:gad = —ZGbc,a + Gac,b + YGab,c-

Raise the index to get

be = %gad(gbd,c + Ged,p — Gve,d)- (2.4)

These are th€hristoffel symbol$or the metricg,, and define the metric connec-
tion V on spacetime.
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2.6.1 Transformation properties of Christoffel symbol
We start fromg,»y = p%pl gas, SO that

Ox® Ozb )

b
Ga'b' ¢! = pg’pb’pZ’gab,c + gabac’ (axalawbl

Ga'v! ¢! + ga/c/,b’ —gb'c' o’ = pg/pg’pg’ (gab,c + Gac,b — gbc,a)
N 5 oz Ox® Lo 0z Ox° 5 0zt Oz
gab C 81‘”’/ 6371)/ b 8xa/ 61‘6/ a 3xb/ axc/

Putting all of this together we find
oz 92z°
Oz dzb Oz’

(2.9) can be used to verify th&t,v, is a tensor.

. =p? pbhpS T + (2.5)

2.6.2 Covariant differentiation of other types of tensor

For instance: what i§,u®? Take an arbitrary covariant vector fiald and consider
Vi (vau®) = 0p (vgu®). Then

Vi (vau®) = u*Vve + v, Vyu®
= u"Opva — I vu® + v, Vyu®

= u?Opvq + v, 0pu’.
This is true for alk,,, so that
Vyu® = opu® + I'p,u’.

In general we get a sign for each contravariant index and-asign for each
covariant index, that is

VoT,¢ = 0,T,° — 1% T,° +T¢,T,°

We write Vy, (1) as( ),;,-

2.7 Differentiation along a curve: geodesics

We need a geometrical description of the rate of change of a physical quantity seen by
an observer moving along a pathi()). This is theabsolute derivativegiven by

D , da® u dzb ov® 4T dab .
V" = —Vpv"' = —— —v
d\ a ? dX 9zt b
_dv? . dat
T e

Note that we only need to know? along the path. We can similarly defi% on
other fields. The absolute derivative of a tensor is again a tensor.
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Afield v* is said to beparallelly transportedalong a curver®(\) iff r:; =0 (and
similarly for other types of tensor).

Note that parallel transport preserves lengths and angle$alfidw® are parallelly
transported, then

d a da? .
EPY (vow®) = avb (geav wd)
b

T
=0.

C

Dv¢
d c
YGed;b + JedW B\ + GedV B

We can apply the notation of absolute derivative to the tangent védg‘iorA curve
xz%(A) is said to beautoparalleliff

D dz®

ar a7

that the tangent vector is parallelly transported along the curve. This is equivalent
to
d2ze da? da°
—— 4. ———=0
oz Phe gy ay T
which, sincel'y, = {Ii} is the geodesic equation. This gives an alternative char-
acterisation of geodesics, ands called araffine parametealong the geodesic.

If v is a geodesic with affine parametethen
d( ditdaty
a T an ) T

- S0 thatgabddi;‘% is a constant along and . is proportional to lengtl (or proper
time 7) along-y.
The acceleration (vector) of a timelike curve(r) with 4-velocityu® = % is

Dub d2ab dz¢ dz?
ab = _ b

I oarz Tredqr

and so geodesics are unaccelerated curves (free fall).

2.8 Local inertial frames

We can now make our definition of a LIF more precise. We want to choose locally
inertial co-ordinates:® near an evenP (x® = 0) such thatg,, = 7., at P and that
particles moving througt® under gravity have no co-ordinate acceleration. We want
to arrangd’¢, = 0 (or equivalentlyg,, . = 0) at P

InaLIF

e the metric looks as much as possible like the flat space metric
e geodesics become straight lines

e parallel transport, acceleration etc. acquire usual flat-space interpretations
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e covariant derivatives become partial derivatives.

To find inertial co-ordinates ned? we translate to put* = 0 and then use a
linear transformation to give,, = 7, at P. Define’T’y, = I'y.|,. Then use the
transformationt® — y* with quadratic inverse

% = ya _ %Orgcybyc.

In the new co-ordinates,

new __ axcaixd old
Gab = 83/“ 8yb Yed

= ((Sac — Ol_‘geye) (6bd — Orgfyf) ('f]cd + gf,lggyg 4+ .. ) .

The terms linear iny© are

(=T mba — Thnaa + 935.) ¥ = 0.

Henceg"®" = n,,, + quadratic iny° — the co-ordinateg® provide a LIF near”.

2.9 Curvature

The curvature of spacetime measures the non-commutation of covariant derivatives.
For a scalar field, ¢.., = ¢.5q, but for a vector field?,

a a __ a a a Td a 7d e
U;bc - v;cb - (Fbe7c - 1_‘ce,b + chrbe - derce) v
_ pa e
=R ecbV

where

a _ 1a a a Td a Td
R ecb — tbec Fce,b + chrbe - derce'

R*,, is atensor (by the quotient theorem) and is called th&ikenann curvature
tensor It is constructed from the metric and its first and second covariant derivatives.
If the spacetime is flat we can choose Minkowskian co-ordinates tg.get 7., SO
thatR¢, , = 0. ThereforeR®, ., = 0 in all co-ordinates. The converse can be proved:
if R?, , = 0then the spacetime is flat.

InalLlFatP,

Raved = 3 (Gad,pe + Gbe,ad — Yac,bd — Gbd,ac) -
This gives the symmetry properties
 Raped = Riatjca := 5 (Rabed — Rbaca)
® Rupca = Rapled)
® Raped = Redab

L4 Ra[bcd] = % (Rabcd + Racdb + Radbc - Racbd - Rabdc - Radcb) = 0. USing
the other symmetries dt,;.q4, this can be equivalently written as

Rabcd + Racdb + Radbc =0.
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Since symmetries of tensors are preserved by co-ordinate transformations, these
hold at any pointP in any co-ordinates. These symmetries imply tRat., has only
20 free components.

TheRicci tensotis R,q = R*,,,. Note that

Ry = gaCRubcd = gaCRcdub = Rap.

Ry, therefore has only ten free components. Rieci scalaris R = "% Ry,.

2.10 Geodesic deviation

Spacetime curvature produces relative acceleration of nearby test particles moving on
geodesics. For convenience in the derivation we replace “2 nearby test particles” with
“1 parameter family of geodesics”. Each geodesic is labelled by a parametee

label points on a given geodesic by proper timmeasured from the origin.

Write u® = -2 2(7, s): the 4-velocity on the geodesic labelled oyThe geodesic

or
equation is
D Oxb
gua = a—ivbu“ = u’Vyu® = 0.
Defineg® = %x“(T, s). Then for smallAs, As£* is a separation vector from the

geodesic labelled byto the geodesic labelled by+ As.

Note that
ou* 0%z 9g*
ds  0sor 01’
and so
§Vyut = 02" Gyt = My g ¢huc
T T s Y T Tos be
_ 85(1 a  bee axb a
=y Thene =g Vet
= u’V, €2,

We now prove (and then use!) tiarvature identitywhich is valid for any vector
fields X, Y* andZ¢:

YV, (Z2°V.X®) — Z°V. (Y'V,X?) =
Yb(VyZ9) (VX + Y Z°V, V. X
—Z°(VeY?) (VX)) — Z°YPV. .V, X
= (Y°V.2" - Z°V.Y") Vi, X* + YPZ°R, X
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Now takeX® = u%, Y® = w? andZ¢ = ¢¢, so that

7V X% =£Vou® =uV L
vabXa = ubvbu“ =0
YV 2 — Z°V, Y = uV. £ — £V b = 0.
Substituting these into the curvature identity we get
Ube (ucvcga) _ Radbcudubgc’
or

D2

528 = R gpoutu’€e. (2.6)

This is theequation of geodesic deviatiolt shows that the relative acceleration is
proportional to separation for two nearby test bodies. We hanesgravitational field
iff we have relative accelerations, iR*, ., # 0, iff spacetime is curved.
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Chapter 3

Vacuum gravitational fields

3.1 The vacuum field equations

We need to guess the field equations of General Relativity. We will use the Newtonian
limit to suggest the vacuum GR field equations and then compare the predictions of
these equations in the non-Newtonian case.

In the Newtonian limit (weak fields and low spee#s}i,’ <1 and% < 1 (where
V is a “typical” speed). We will use co-ordinate$ = (z,v, z, ct). From the equiva-
lence principlegyy = —1 — i—f + ... anditis reasonable to expect tlzdit deviations
from flatness are of ordef .

A geodesic in Newtonian gravity has~ t, %
of the geodesic equation is

< ¢, and the spatial component

d2z? ; dztdab  d2ay i
=gzt — ~ — 4T,

0 @dr dr T de?

Now
1= %9“944,4 + %9” (9ja,a — gaa,j) = —%5”944,1'
asg” ~ §% and the derivativé), should be smaller than derivativésby a factor
of orderO(%) <« 1. Thusl'y, ~ ¢~ 2¢,; and the geodesic equation is

d2z?
dt?

~ _¢,i7

which is probably a good thingli, are the only Christoffel symbols significant
for Newtonian gravity.

We now consider geodesic deviation in the Newtonian limit. Take a (spatial) sep-
aration vectog® = (¢,0). Now u® = % = (0, ¢) at low speeds and the geodesic
deviation equation

D%, .
de2 =R bdcubudé-

gives ‘fff; R~ c2Ri44j§J'. ThereforeR',,; are the only components of the Riemann

tensor which are significant for Newtonian gravity. In the Newtonian limit

19



20 CHAPTER 3. VACUUM GRAVITATIONAL FIELDS

a _ a a a « a «
R%ae = Thed — Thae T Taalve — Tealba

~ Ta a
NFbc,d_ bd,c*

ThereforeRr’,,; ~ T, , — T4, ;. If Lis a typical lengthscale of the system then

all theT, areO(-£) and saly; ; = O(25 ¥) butl, ; = O(4). ThusR',; ~
—I'y,; = —¢?¢ ;. The Newtonian geodesic deviation equation is therefore
d2£i .
e~ —9.i;§”.

We base the vacuum GR equations on that for a Newtonian #gld= 0. In the
Newtonian limit we find that

Rys = R'y;y ~ ¢ 2¢ 4 = 0in vacuum.
Since we wantensorfield equations valid in all co-ordinate systems this suggests

Ray =0 (3.1)

for the vacuum field equations (vacuum Einstein equations). Siygds sym-
metric we have 10 field equations, second order in the “gravitational potegtialA
highly nonlinear gravitational field can act as its own source.

3.2 The Schwarzschild metric

We look for a solution of the vacuum Einstein equations describing the gravitational
field outside a spherically symmetric body at rest. (It can be shown that) A static
spherically symmetric metric has the form

ds? = (M qr? + 72 (d92 + sin? 6d¢2) _ (M2

in suitable co-ordinates. There are no cross tettigspace since the metric must be
invariant undet — —t.

The radial co-ordinate is chosen for simplicity — such that each sphere wijth
constant has the intrinsic metri€ (d62 + sin® 6d¢?). We can change to r/(r), but
the metric loses its simplicity in this case.

The spherical symmetry forbids cross terdisld (etc) and makeg,.. a function
of r only.

To impose the vacuum Einstein equatidig, = 0 we need to find the Christoffel
symbols. It is most convenient to find them via the geodesic equations. We use an
alternate Lagrangian for the geodesics,

B
5 / Gapd®i? dX\ = 0,
A

wherez® = %. It is easy to use the Euler-Lagrange equations to show that this

gives the geodesic equations. We find thatust be a multiple of or ¢ along extremal
curves.
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In this spherically symmetric metric

L=e*Mp2 4 p2 (92 + sin? 9(&2) — M2, 3.2)

The Euler-Lagrange equations give

2e%7 + ea’i? — 2r (92 + sin? 992)2) + et =0, (3.3)
2r20 + 4770 — 2r% sin ) cos 0¢% = 0, (3.4)

2r? sin® 0¢ + 4r sin® O¢ + 412 sin 0 cos 00 = 0, (3.5
—2e7t — 2977 = 0. (3.6)

The only non-zero Christoffel symbols (whese = (r, 0, ¢, t)) are:

i = %a’ Iy = —re ™ Tl = —re *sin?6
iy =37 Ti,=rt I'Z, = —sinfcosd
3, =r1 I3y =cotd Ti =31y

and the transposdg’, = I'9,. We can now find the Ricci tensor, which has non-zero
components

R =—37"+ 107 + 172 + 7" 3.7)
Ry = e (57(a' =) =1) +1 (3:8)
R33 = sin® O Ry» (3.9
Ry =" (37" = 50/7 + 192 +1r71). (3.10)

Equations[(3]7) and (3.1L0) give us+ v = « (a constant). Substituting intp (3.8)
we gete™® = 1 — ¢ (and we can check that this is consistent with|(3.7)). Thus

+ 72 (d92 + sin? 9d¢2) — e (1 — %) de?.

We normalizet to ordinary time as: — oo, so thate® = c2. In the far field,
g = —c® + 2EM if the body has mas3/. Thusa = 29M and we arrive at the
Schwarzschild metric

dr?
1 _ 2GM +r

c2r

d82 _ 2 (d92 4 Sin2 9d¢2) _ C2 (1 _ QG]\/[) dt2 (311)

c2r

(in Schwarzschild co-ordinatés, 6, ¢, t)).

This is only defined in the vacuum outside the body, but we can smoothly join it
onto a different solution in the region containing matter. There is an apparent singular-
ity atr = rg = 29 the Schwarzschild radius.

Usually the radius of matter is much greater than the Schwarzschild radius (for the
Sun,rg = 3km), but if there is vacuum down to= rg we have a black hole.

It can be proven that spherical symmetry and the Einstein equations imply the static
Schwarzschild solution (even allowing time dependence). This is called Birkhoff’s
theorem.
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Direct computation shows th&t®, ;. has non-zero components and so this space-
time is genuinely curved. The space part has metric

dr?

—2GM
1 c2r

ds® = + 7% (d6? + sin® 6do”)

and is also curved.
As expected the corrections to the flat space metrimﬂ(r{;&) in the far field.

3.3 Gravitational redshift in the Schwarzschild metric

The proper frequency as measured by the emittér is 2= = ﬁ The
P1(—g¢t(r1))2
proper frequency measured by the recievépis- 3= = (2#(0))1
P1(—gtt(r2))2
The ratio ' ’

ba gt (1) 2GM 3 2GM ~2
b =\1-—=) \I-—2
by gee(72) c*ry c?ry

gives the gravitational redshift. This is observed for many white dwarf stars.

3.4 Particle paths in the Schwarzschild metric

In this section we use geometrical units in which= G = 1. We can obtain the
geodesics from the Lagrangiahin (3.7). We do not attempt to solve the geodesic
equations directly but instead seek first integrals of the motion.
g—L = 0 and sor?sin” ¢ = h, a constant. For a massive particle=£ 7) in the far
field (r =~ t), we see that this is just the angular momentum (per unit mass) about the
0= 80 axis.
L

9L — 0, sothat(1 — 2M) { = E is a constant. This is the energy per unit mass.

_1
For a slow moving massive particlgt ~ (1 —v?) 2 (1+ )~ 142 4 %vQ
Thus in the far field, for a slow moving massive particle we seefhat 1 + %vQ — ¥
and so it is reasonable to associatavith the energy.

Finally, as particle paths are geodesics,

D dz®

dx d

and so
d dz® dab

5 <g“bd)\d)\) =0
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Thus . is conserved. In fact, for a timelike geodegic= —1 and for a spacelike
geodesicC = 0.

We can further simplify the problem by taking the motion only in the equatorial
plane. We can initially arrangé = 5 andéd = 0 by rotating the co-ordinates. Note
that [3.4) is now automatically satisfied.

Using the conserved quantities we get the radial equation

E? 72 h* {—1 massive particle

1—2M g 2M 2 0  massless particle.

In principle we can integrate this to g&tr), ¢(r) and¢(r). For spatial orbits we

useu = r~!, so thati = —hg%.
For a massive particle the radial equation becomes

2
h? (j;) = E? — (14 h*u?)(1 — 2Mu).

Taking j—d) of this and dividing b ﬁ we get

d?u M 9
?& +u= ﬁ + 3Mu”.
The massless version of this is
d?u 9

3.5 Perihelion advance

Consider bound orbits of a slow massive particle at lare>> M). We seek to solve
the equation

du M 9
which we will do by perturbation methods. The zeroth approximation is
1+ ecos¢ h?
U=——, l=—.
l m

We iterate this: the next approximationd¢s) satisfies

d?u 1 3n2
1 +u= 7 + = (14 %e® +2ecosd + 2e® cos2¢) .
It will be a better approximation i < /. The solution of this equation is
3h? 1,2 h?e . 1
lu =14 (14 3€°) + e (SQSsmgb — §€C082(,Z5) + ecos ¢.

The e cos ¢ comes from the zeroth order solution. The aperiaghin ¢ term cor-
responds to an altered periodicity. Note that

2 2
ecos ¢ + %¢Sin¢wecos (1 — %) o,
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and the periodicity irp is approximatel\2s (1 + i—’f) If a is the semi-major axis
with
1 1 21

Umin Umax 1—e?

2a =
we can write the perihelion advance

6mh? _ 6w M 6m M

12 I a(l—e?)’

which is% in MKS units.

The orbit is approximately elliptical, but is slowly rotating (precessing). The peri-
helion advance i%% per orbit.

In the solar system the largest effect is on Mercury — the residual precession (that
not accounted for by.-body Newtonian effects) of3” per century measured agrees
with this calculated result.

In a binary pulsar this effect is much bigger — abdutper year.

3.6 Light deflection

Consider a particle on a null geodesic, satisfying the equation

d?u 9
@+u:3MU .

The zeroth order approximation for the light pathuis= %. The next approxi-
mation is
sin ¢ + 2% (3 4 cos 2¢)
R b

u =

keeping the symmetry abouit= 7.
The light path is bent and we need to findVe setu = 0 andsin e =~ ¢, cos 2e¢ = 1,

so thate ~ 2M . This is 25X in MKS units.
This is observed in the solar system for light from stars which passes close to the

sun at eclipses.

More detailed analysis of light deflection shows that @(e(%) corrections ing;;
and g;; produce comparable contributions. In other theories of matter they combine
differently, for instance Nordstm’s theory predicts no light deflection.




3.7. BLACK HOLES AND THE EVENT HORIZON 25

3.7 Black holes and the event horizon

Consider the vacuum Schwarzschild metric near 2M and look at particles/photons
falling towardsr = 20 . For radial infall we havéd, ¢) constant and = 0. We want

to solve the equations
2M N\ dt
1-—)—==F
( r ) dA

(dr)2 g {— (1-2M) massive

d\ 0 massless.

and

In the massive cask = 7 and so
dr
-
(52— 1420

dr = —

We clearly needZ? > 1. We see that — 2} in a finite proper time

dr
T:_/ 2M\3
(B —1+24)

The co-ordinate time is nastier. We have
Edr

(1— 2M) (g2 — 14 2M)2

dt = —

and sot — oo asr — 2M. Something similar happens for photons. We conclude
thatt is not a good co-ordinate for analysing the metric near 2. Instead we use
a co-ordinate tied to the incoming particles. It is simplest to do photons.

Consider radially infalling photons, which satisfy the equation

dr () _2M
dt r )’
We can integrate this to find = —r — 2M log(r — 2M) + v, wherewv is con-

stant on photon paths. We change co-ordinates fmaith ¢, ¢) to (r, 0, ¢, v), ingoing
Eddington-Finkelstein co-ordinate$he Schwarzschild metric becomes

2M
ds? = — (1 — r) dv? + 2dvdr + 2 (d92 + sin? 9d¢2) .

This metric is well-behaved down to= 0 (except for a trivial polar co-ordinate
singularity aty = (0, )). It hasdet g, < 0 and canonical forra-++— everywhere in
v > 0. It provides the ingoing extension of the Schwarzschild metric througi2 M.
This is a simpleco-ordinate singularity

However we find the curvature invariaft,,q. R4 = ﬁ—?z and so there is a
genuine singularity of the spacetimesat= 0. This is acurvature singularityand
constitutes a boundary of the spacetime.

On any worldline we needs? < 0 (equality iff photons). Thus

2M
— (1 — ) dv? + 2dvdr < 0
r
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with equality iff we have photons witid = d¢ = 0. In r > 2M the future light cone
is defined by

2dr
dv = T

T

dv > 0.

Inr < 2M we have

r

2M
drS(l—)dv dv>0

and sodr < 0. Thus any particle im < 2M inevitably has- decreasing to zero.
Light or particles cannot escape fram< 2M, butcanclearly escape from > 2M.
The regionr < 2M is ablack holeand the boundary surface= 2M is its event
horizon



Chapter 4

Matter in General Relativity

Our final aim is to formulate the nongravitational laws of physics in curved spacetime
and to find the field equations of GR in the presence of matter.

4.1 Physical laws

The equivalence principle means that all laws have their usual special relativistic forms
in any LIFs. Moreover, the formulation of the laws should be the same in any reference
frame — tensorial. Therefore to find physical laws we take the special relativistic laws
and use them at the centre of a LIF to find the curved space covariant law.

Ina LIF at P, gop = Nab, gab.a = 0 andI'f, = 0 and so covariant derivatives
reduce to partial derivatives. Therefore to make a special relativistic law covariant we
replace partial derivatives with covariant derivatives apgdwith g,,. This isminimal
coupling— we do not make unnecessary changes to the flat space laws.

For instance, consider free particle motion, which satisfies the eqd%t_?én: 0
in a local inertial frame. This becomes

d?z a dzb dz? D [(da*\ 0
arz bddeT—dT<dT)— 7

which is the geodesic law.
A scalar fieldy satisfying the wave equatidiy = %y ., = 0 in flat spacetime
becomeg**¢.,, = 0 in curved spacetime.

4.2 Energy-momentum tensors

The matter content of spacetime is described by an energy-momentumT&fsor
Consider a continuous medium of densitywithout pressure (“dust”).p is the
proper density measured in the local inertial rest frame 71%t= pu®u® = T%*. In a
local inertial frame we hav@“b, » = 0 (by Navier-Stokes and the continuity equation)
and so the equations of motion in general co-ordinate@“alyg.‘: 0. In the Newtonian
limit, with gravity, the space parts of this give Navier-Stokes and the time part gives
the continuity equation.
All forms of matter have symmetric energy-momentum tengtﬂfSobeyingTaﬁb.
This is ultimately because all quantum fields have a Lagrangian from which one can
construct an energy-momentum tensor which is automatically conserved.

27
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4.3 The Einstein field equations

We wish to generalise the vacuum Einstein equat®ps= 0 to include matter sources
and reproduce ;; = 47Gp in the Newtonian limit.

4.3.1 The Bianchi identities

In a local inertial frame centred at* = 0 we haveg,, = 14, + quadratic and’y;, =
linear in a Taylor expansion about = 0. Then

R = Fgc,d - ng,c + quadratic

and so
Rabdc‘e = Fgc de ng ce + quadratlc

Hence at the origin of a local inertial fram& bdese] = Lble.de] b dce] = 0.
But this is a tensorial equation, db“b[dc g = =0 everywhere LI'hese are tiganchi
identities

They can be equivalently written (using the symmetrieR®f, ) as

Rygeie + R%pceia + B%eq,c = 0.
contracting orz ande, multiplying by ¢®¢ and renaming the indices gives
—R%.,+ Ryp— R%,, =0.
We thus obtain theontracted Bianchi identities

Vb (Rab_%gabR) =0

4.3.2 Field equations

The contracted Bianchi identities suggest taking the field equations
ab 1 ab ab

These are th&instein field equationsThe Bianchi identities then imply the con-
servation of energy-momentum automatically. In fact it can be shown that the left hand
side of the Einstein equations is the only possible tensorial expression lingar,in
not involving higher derivatives, vanishing in flat spacetime and with identically zero
divergence.

One can verify the Newtonian limit: it turns out that= 8§4G (Einstein’s constant
of gravitation).

Gravitation is nonlinear. The gravitational field must carry energy, although this
can never be localised, since the geometry near any pblobks Minkowskian in a
local inertial frame af.
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