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Chapter 1

Outline of the theory

1.1 Curved spaces

Consider a two dimensional curved surface in EuclideanR3, for instance with the
defining equationz = z(x, y). We distinguish between the extrinsic and intrinsic
properties of such a surface.

The extrinsic properties describe the relation between the surface and the surround-
ing 3 dimensional space, for instance the extrinsic curvature ifz = z(x, y) is not a
plane.

The intrinsic properties refer to quantities such as distance, angle and area measured
within the surface. For instance, the Euclidean metricds2 = dx2 + dy2 + dz2 gives
the distance between nearby points in the surface as

ds2 = dx2 + dy2 +
(
∂z

∂x
dx+

∂z

∂y
dy

)2

.

The surface has an intrinsic Riemannian (positive definite) metric of the form

ds2 = A(x, y) dx2 + 2B(x, y) dxdy + C(x, y) dy2.

The metric at a pointP on the surface describes the geometry (distances, angles,
etc.) on the plane tangent to the surface atP .

We have the freedom to change co-ordinates. Ifx, y 7→ x′(x, y), y′(x, y) then the
metric becomes

ds2 = A′(x′, y′) dx′2 + 2B′(x′, y′) dx′dy′ + C ′(x′, y′) dy′2,

whereA′, B′ andC ′ can be calculated. The geometry of the surface is the same
however the co-ordinate lines are painted on — as an example takeR2 with the metric
ds2 = dx2 + dy2 = dr2 + r2 dθ2.

The cylinder inR3, x2 + y2 = R2 has the intrinsic metricds2 = dz2 + R2 dφ2

(using cylindrical polars). We can locally make the co-ordinate changex = z, y = Rφ
and we get the flat space metric. The intrinsic geometry of the cylinder is that of a
plane, although the cylinder has extrinsic curvature.

We can do the same sort of thing with the 2-sphere of radiusa in R3. This has the
intrinsic metricds2 = a2

(
dθ2 + sin2 θ dφ2

)
(whereθ andφ are the usual spherical

1



2 CHAPTER 1. OUTLINE OF THE THEORY

polars). Lettingr = aθ we get the metric

ds2 = dr2 + sin2 r

a
dφ2

≈ dr2 +
(
r2 − r4

3a2
+ . . .

)
dφ2 near the North pole.

These extra terms are the effects of the intrinsic curvature of the sphere, which is
K = a−2.

The circumference of the circle at constantr is

C = 2π
(
r − r3

6a2
+ . . .

)
=

∮
ds,

and the area within the circle is

A = πr2 − πr4

12a2
+ · · · =

∫
Cdr.

We note that

K = lim
r→0

3
π

2πr − C
r3

= lim
r→0

12
π

πr2 −A
r4

. (1.1)

1.1.1 Geodesics

These are the generalisation of straight lines in a flat space. If points are not too far
apart we can find the geodesicγ by extremizing the length

∫
γ

ds.
Geodesics are intrinsic to the surface (they depend on the metric). As an example,

great circles on the sphere are geodesics.
We can find the intrinsic curvature of any surface at a pointP by drawing all

geodesics fromP out to a distancer. We evaluate the circumferenceC(r) and thus
areaA(r) and use (1.1) to define the curvatureK at that point.K can be negative (for
instance at a saddle).

Let ξ(r) (the geodesic deviation) be the distance between the ends of two nearby
geodesics of lengthr from a pointP . On S2, ξ(r) = a sin r

aδφ and we note thatξ
satisfies thegeodesic deviation equation:

d2ξ

dr2
= −Kξ.

A similar equation holds in any curved space. Thus ifK > 0 two neighbouring
geodesics recross (eventually), ifK = 0 the geodesics are straight lines and ifK < 0
the geodesics separate exponentially.

1.2 The principle of equivalence

1.2.1 Uniqueness of free fall

Consider the (Newtonian) dynamics of a single particle under gravity,

Mẍ = −M∇φ,
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whereM, the inertial mass, equalsM , the passive gravitational mass. Motion
under gravity is independent of mass and composition.

If a gravitational fieldg = −∇φ is constant in space and time then all particles have
a constant accelerationa = g superimposed on the gravity-free motion,x = x′+ 1

2at
2,

wherex′ could be regarded as the position in an inertial frame with no gravitational
field. Conversely, uniform accelerationa applied to the co-ordinates gives the illusion
of a uniform gravitational fielda. Uniform gravitational fields are “fictitious” — they
can be eliminated by a change of co-ordinates.

In anygravitational field, if an observer falls freely in a non-rotating laboratory, he1

sees objects in the laboratory moving essentially on straight lines — the local gravita-
tional field has been eliminated.

A freely falling non-rotating laboratory provides alocal inertial frameallowing
inertial co-ordinates(x, t) to be set up near the laboratory.

There are limitations on local inertial frames. Nearby particles atx andx + ξ have
relative tidal acceleration

d2ξi

dt2
= −φ,ijξ

j .

In a “true” non-uniform gravitational field tidal forces cannot be eliminated by
co-ordinate transforms and there are many different local inertial frames with relative
accelerations.

1.2.2 Equivalence principle

All local inertial frames are equivalent for the performance of all ex-
periments. All non-gravitational laws of physics take their special-
relativistic forms in local inertial frames (by the usual arguments of spe-
cial relativity).

We can thus do things like fluid dynamics, quantum mechanics and electromagnetic
theory in a gravitational field by using the special-relativistic laws and local inertial
frames.

The speed of light is thereforec and distances and times are measured by the
Minkowski metricds2 = dx2 + dy2 + dz2 − c2dt2.

1.2.3 Consequences for light propagation

The obvious consequence is that light can be deflected by gravitational fields (just like
ordinary matter) because light moves in straight lines in local inertial frames which
accelerate with respect to global co-ordinates.

There is also a gravitational frequency shift. Consider a lift of heighth accelerating
downwards at a rateg with respect to the earth. The lift has speed0 at t = 0 and a
light ray of frequencyν is emitted from the base of the lift att = 0. At t = hc−1 the
light ray is at the top of the lift and has an observed frequencyν in the lift frame (by
the equivalence principle). The lift then has speedgh

c and so the light has a Doppler

shifted frequencyν
(
1− gh

c2

)
measured from the earth frame. Note that

dν
ν

= −dφ
c2
. (1.2)

1More properly, (s)he. Sex will be assigned at random.
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The same thing happens for light emitted in the other direction.2

We can integrate (1.2) to find

ν

ν0
= exp

(
φ0 − φ
c2

)
for a photon emitted atP0 with a frequencyν0 and observed with a frequencyν at

P .
We expect that clocks in a potential well will appear to go slow (gravitational time

dilation). This is observed for spectral lines in some white dwarf stars, but is not a big
effect.

1.2.4 Special relativity and gravitation

Can we fix up special relativity so that it holds over an extended region containing
gravitational fields?

Gravitational time dilation implies that a good clock at rest measures a timetm =
tc exp φ

c2 , where(xc, yc, zc, tc) are special relativistic co-ordinates. We can only make
the theory Lorentz invariant if all measurements obey

ds2m = exp
(
φ

c2

)
ds2c .

This is completely equivalent to a special type of curved spacetime theory (notGR)
with metric

ds2 = exp
(
φ

c2

) (
dx2 + dy2 + dz2 − c2dt2

)
,

and this is a more natural viewpoint. We see that attempts at combining special
relativity and Newtonian gravity lead naturally to curved spacetimes.

1.3 Outline of general relativity

Our arguments have led us to a curved spacetime with four co-ordinatesxa (a =
1 . . . 4) and a metricds2 = gab dxa dxb, wheregab = gba depends on position.

At any eventP in spacetime one can find a local inertial frame — one can make a
co-ordinate change such that

gab = ηab =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −c2

 .

ηab is theMinkowski metric(here defined oppositely to Electrodynamics).
The metricgab has the canonical form+ + +− at each point.
Recall that intervals withds2 < 0 aretimelike, intervals withds2 > 0 arespacelike

and intervals withds2 = 0 arenull.
Ordinary massive bodies move on timelike pathsxa(λ) with dxa

dλ timelike and light
travels on null paths withdxa

dλ null.

2This aspect of the equivalence principle is confirmed by the Pound-Rebka experiment.
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We also have theclocks hypothesis: the metric determines the time measured by a
standard clock moving on a timelike pathxa(λ) from eventA to eventB:

τ =
1
c

∫ B

A

|ds| .

The length hypothesisis that standard rods measure the lengthds.
As for the equations of motion, we know that particles move on essentially straight

lines in local inertial frames and this suggests thegeodesic hypothesis, that freely
falling particles move on geodesics. The path of a particle moving fromA to B ex-
tremizes ∫ B

A

|ds| .

We guess that massive particles move on timelike geodesiscs and that massless
particles move on null geodesics.

1.4 Static spacetime and Newtonian gravity

We compare general relativity with Newtonian gravity for low speeds and weak fields.

1.4.1 Static metrics

Consider a time independent gravitational field produced by a system of bodies at rest.
We have co-ordinatesxa = (xi, t) (i = 1, 2, 3) and the metric tensorgab is a function
of thexi alone. This is a stationary metric, and allows us to synchronize clocks.

Observer 1 atxi
1 bounces light rays off observer 2 at

xi
2. Since the metric is independent of time the photon

pathsxi(λ) in space, and hence the timet elapsed must
be the same for each bounce.
Observer 1 sees the photon returning regularly after a
proper time intervalτ1 and observer 2 sees the pho-
ton returning regularly after a proper time interval
τ2. Thus observer 2 can measure time by defining
t2 = k1

k2
τ2 + const. Observers at all points in space

can do the same thing — ensure that time passes at the
same rate.

However, can we actually synchronize the origin of time for different observers?
We can do this (as shown) if the metric isstatic:

ds2 = gij(xk) dxi dxj −A(xk) dt2.

In this case the metric is symmetric under time reversal and so the time reverse of
a photon path is also a photon path.

If the field is produced by matter at rest then the matter distribution is invariant
under time reversal and so the metric should also be symmetric — i.e. static.

Stationary metrics are produced by steadily moving distributions of matter — for
example rotating stars.

From gravitational time dilation we see thatA = c2 exp
(

2φ
c2

)
.
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1.4.2 Newtonian limit

Take a static metric and a weak field, that is
∣∣∣ φ
c2

∣∣∣ small. ThenA ≈ c2 + 2φ and we

expectgij = δijO( φ
c2 ).

Consider a slowly moving particle withvi = dxi

dt such thatv2 � c2. We thus have

ds2 = gab dxa dxb =
(
v2 +O(v2 φ

c2 )− c2 − 2φ+O(φ2

c2 )
)

dt2 on the path.

Thus ∫
|ds| ≈

∫
c2 + φ− 1

2v
2 dt

and the Euler-Lagrange equations yielddvi

dt = − ∂φ
∂xi .



Chapter 2

Metric differential geometry

We need a formulation of physics valid in arbitrary co-ordinate systems. Physical quan-
tities must have existence independent of particular co-ordinates being used – hence
must transform properly under co-ordinate transforms. They should be represented by
tensors.

2.1 Basic tensors

Consider the co-ordinate changexa 7→ xa′
(xb) on spacetime, with inversexa′ →

xa(xb′
).

Define

pa′

a =
∂xa′

∂xa
,

pa
a′ =

∂xa

∂xa′ .

Note thatpa′

a p
b
a′ = ∂xa′

∂xa
∂xb

∂xa′ = δ b
a , by using the chain rule, where

δ b
a =

{
1 a = b

0 a 6= b

is the Kronecker delta.
Under repeated co-ordinate changexa 7→ xa′ 7→ xa′′

, we have the group property,
using the chain rule,

pa′

a p
a′′

a′ = pa′′

a .

A covariant tensorof nth rank, with componentsTa···b with respect to co-ordinates
xa, at a pointP has transformation law

Ta···b → Ta′···b′ = pa
a′ · · · pb

b′Ta···b.

Note that the group property shows that the componentsTa′···b′ are uniquely defined
with respect to any co-ordinate system if they are fixed in one systemxa; this provides
a way of constructing all tensors.

7
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A contravariant tensorT a...b transforms as

T a···b → T a′···b′
= pa′

a . . . pb′

b T
a···b

Similarly for mixed tensors, for example

T b
a → T b′

a′ = pa
a′pb′

b T
b

a

It is important to keep the order of the indices the same.
A scalar is a tensor with no indices, invariant under co-ordinate change, for exam-

ple the mass of a particle.
A scalar fieldφ(xa) is a scalar function for example pressure or particle density in

a fluid.
A covariant vector fieldva(xb) is a vector function of position. For example if

φ(xb) is a scalar field thenva = φ,a := ∂φ
∂xa is a covariant vector field, since

va′ =
∂φ

∂xa′ =
∂xa

∂xa′

∂φ

∂xa
.

A further example is a pressure gradientp,a in a fluid.
Suppose a curvexa(λ) parametrised byλ, has a tangent ofva = dxa

dλ at the point
P . va is acontravariant vector. This follows because

va′
=

dxa′

dλ
=

dxa′

dxa

dxa

dλ
.

Other examples are the4-velocity of an observer,ua = dxa

dτ , whereτ is proper
time.

2.1.1 Examples of tensors

• The Kronecker delta is a tensor:

pa
a′pb′

b δ
b

a = pa
a′pb′

a = δ b′

a′ .

• The metricgab is a tensor, since the invariantds2 can be written

ds2 = gabdxadxb = gab
∂xa

∂xa′ dx
a′ ∂xb

∂xb′ dx
b′

= ga′b′dxa′
dxb′

wherega′b′ = gabp
a
a′pb

b′ .

Further examples will be provided by the curvature and energy momentum tensors.

2.1.2 Operations preserving tensor property

• Addition: Tab +Wab is a tensor ifTab andWab are tensors.

• Scalar multiplication:fTab is a tensor ifTab is a tensor.

• Outer products:vaTbc transforms as

va′
Tb′c′ = pa′

a p
b
b′pc

c′vaTbc.
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• Contraction of one covariant with one contravariant index: ifT a
bc is a tensor,

definevc = T a
ac, transforming as

vc′ = T a′

a′c′

= pa′

a p
b
a′pc

c′T a
bc = δ b

a pc
c′T a

bc

= pc
c′T a

ac = pc
c′vc.

• Interchange of indices:Tab (a tensor)7→ Tba which is also a tensor. Similarly
symmetrisation and anti-symmetrisation

T(ab) =
1
2!

(Tab + Tba)

T[ab] =
1
2!

(Tab − Tba)

The above can readily be generalised to more indices.

2.1.3 Quotient theorem

SupposeUa = T abVb is a vector for all vectorsVb. Thenpa′

a U
a = pa′

a T
abVb, and

Ua′
= pa′

a U
a = T a′b′

Vb′ = T a′b′
pb

b′Vb.

Subtracting these last two yields,

(T a′b′
pb

b′ − pa′

a T
ab)Vb = 0 ∀Vb and so

T a′b′
pb

b′ = pa′

a T
ab.

Multiplying both sides bypc′

b yields

T a′b′
pb

b′pc′

b = T a′b′
δ c′

b′ = T a′c′
= pc′

b p
a′

a T
ab.

HenceT a is a tensor.

2.1.4 Inverse metric tensor

Definegab(= gba) to be the matrix inverse ofgab, i.e. such thatgacg
cb = δ b

a . Now
for any vectorV a can define a vectorUa = gabV

b. Note that there is a one to one
correspondance betweenUa andV a sincegab is non-singular and so we can construct
all vectorsUb in this way. The quotient theorem implies thatgab is a tensor.

2.1.5 Raising and lowering of indices

We can usegab to raise any covariant index. For exampleTab gives a tensorT a
b =

gacTcb if the first index is raised. Similarly we can usegab to lower any index, for
exampleW ab givesW b

a = gacW
cb. The index ordering must be carefully maintained.

Raising and lowering are inverse operations. One normally regards e.g.Tab, T b
a ,

T a
b andT ab as different versions of the same object.
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2.1.6 Partial derivatives of tensors

Partial derivatives of tensors are not tensors in general. For example supposeva is a
vector field. Thenva′ = ∂xa

∂xa′ va and so

∂va′

∂xb′ =
∂2xa

∂xa′∂xb′ va +
∂xa

∂xa′

∂xb

∂xb′

∂va

∂xb

6= pa
a′pb

b′
∂va

∂xb
in general.

The only exception isφ,a as mentioned earlier.

2.2 Lengths and geodesics

The squared magnitude of a vectorva or va is defined to bevav
a = vavbg

ab = vavbgab

and is invariant under co-ordinate transformations.
It can be evaluated in a local inertial frame wheregab = ηab.

va is


spacelike ifvav

a > 0,

null if vav
a = 0,

timelike if vav
a < 0.

As before, ifva is spacelike we can find a Lorentz transformation in the local
inertial frame makingva = (vi, 0). Thenvav

a = (v1)2 +(v2)2 +(v3)2 = |v|2, which
is the physically measured squared magnitude ofva in that frame. Ifva is timelike we
can makeva = (0, v4) and thenvav

a = −c2(v4)2.

2.3 Angles between vectors

Suppose thatva andwa are both spacelike and that we have chosen a local inertial
frame such thatva = (vi, 0), wa = (wi, 0). Then the angleθ betweenva andwb is
defined by

cos θ =
v ·w
|v| |w|

Cartesian notation in LIF, or

=
(gabv

awb)
(vdvd)1/2(wcwc)1/2

invariant definition.

2.4 Lengths of curves

If xa(λ) describes a spacelike curveγ, which is parameterised byλ (i.e. if va = dxa

dλ
is spacelike alongγ), the length ofγ fromA toB is∫ B

A

ds =
∫ B

A

(
gab

dxa

dλ
dxb

dλ

)1/2

dλ.

If xa(λ) gives a timelike curveγ (i.e. va = dxa

dλ is timelike alongγ), then the time
elapsed alongγ fromA toB is

1
c

∫ B

A

|ds| = 1
c

∫ B

A

(
−gab

dxa

dλ
dxb

dλ

)1/2

dλ.
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2.5 Geodesics

A geodesicγ fromA toB extremises

∫ B

A

|ds| =
∫ B

A

∣∣∣∣gab
dxa

dλ
dxb

dλ

∣∣∣∣1/2

dλ =
∫ B

A

L(xa(λ), ẋb(λ)) dλ,

whereẋa(λ) = dxa

dλ , subject to fixed endpoints:xa(λ1) are the co-ordinates ofA, and
xa(λ2) are the co-ordinates ofB.

For example consider a spacelike geodesic. Then

∂L

∂ẋa
=
gabẋ

b

L
∂L

∂xa
=
gbc,aẋ

bẋc

2L

Using the Euler-Lagrange equations

d
dλ

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0

gives

L−1

[
gabẍ

b + (gab,c −
1
2
gbc,a)ẋbẋc

]
= L−2 dL

dλ
gabẋ

b.

Using our freedom to reparametrise the curve we can chooseλ = s, the distance along
γ. ThenL = 1 and dL

dλ = 0 alongγ. Therefore

0 = gabẍ
b + (gab,c −

1
2
gbc,a)ẋbẋc

= gabẍ
b +

1
2
(gab,c + gac,b − gcb,a)ẋbẋc.

Raising indexa yields thegeodesic equation

d2xa

ds2
+

{
a

bc

}
dxb

ds
dxc

ds
= 0,

where {
a

bc

}
=

1
2
gad(gbd,c + gcd,b − gbc,d).

The same equation is obtained for timelike geodesics and we have the equations of
motion for a test particle in a gravitational field.

The expression
{

a
bc

}
involves the “derivatives of gravitational potential” and corre-

sponds toφ,i in Newtonian gravity. It is possible to rederive Newtonian dynamics in
this way – see later.

The geodesic equation is a second order ordinary differential equation and so a
geodesic is uniquely specified once the starting pointxa(0) and an initial tangent di-
rectionẋa(0) are chosen.
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2.6 Covariant differentiation and Christoffel symbols

Physical laws involve partial derivatives. We need a generalisation∇a of ∂a := ∂
∂xa

which preserves tensorial properties. We want the covariant derivative operator to

• keep∇aφ = ∂aφ for scalar fieldsφ, since∂aφ is already a covariant vector field.

• look like∇bva = ∂bva − Γc
bavc acting on covariant vector fields, whereΓc

ba is a
(non-tensorial) collection of43 numbers to be constructed out of the metric and
its first derivatives, and−Γc

bavc is designed to cancel out the bad transformation
properties of∂bva.

• commute with addition:

∇d(T a...b
d...c + Ua...b

d...c) = ∇dT
...

... +∇dU
...

....

• obey the Leibniz rule

∇a (T ...
...U

...
...) = (∇aT

...
...)U

...
... + T ...

... (∇aU
...

...)

• satisfy∇dgab = 0,∇dg
ab = 0 and∇dδ

a
b = 0.

• commute with index contraction:

∇a

(
T ···b······b···

)
= δd

c∇a (T ···c······d···) .

These properties imply that∇a commutes with the operations of raising/lowering
indices.

We want to find theΓ’s, which we will do using the zero covariant derivative of the
metric. First note that for any covariant vector fieldsua andvb,

∇d(uavb) = ua∇dvb + vb∇dua

= ∂d(uavb)− Γc
dbuavc − Γc

daucvb.

Now any tensor fieldTab can be built by adding tensors of the formuavb, so using
linearity

∇dTab = ∂dTab − Γc
dbTac − Γc

daTcb.

for any tensorTab. We apply this to the metric tensorgab to get

∇dgab = gab,d − Γc
dbgac − Γc

dagcb = 0. (2.1)

Permuting the indices cyclically, we get

∇agbd = gbd,a − Γc
adgbc − Γc

abgcd = 0. (2.2)

∇bgda = gda,b − Γc
bagdc − Γc

bdgca = 0. (2.3)

We make the further simplifying assumption of symmetry:Γc
ab = Γc

ba. Now take
(2.3)− (2.1)− (2.2) and adjust the indices to get

2Γd
bcgad = −gbc,a + gac,b + gab,c.

Raise the indexa to get

Γa
bc = 1

2g
ad(gbd,c + gcd,b − gbc,d). (2.4)

These are theChristoffel symbolsfor the metricgab and define the metric connec-
tion∇ on spacetime.
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2.6.1 Transformation properties of Christoffel symbol

We start fromga′b′ = pa
a′pb

b′gab, so that

ga′b′,c′ = pa
a′pb

b′pc
c′gab,c + gab∂c′

(
∂xa

∂xa′

∂xb

∂xb′

)
.

ga′b′,c′ + ga′c′,b′ − gb′c′,a′ = pa
a′pb

b′pc
c′ (gab,c + gac,b − gbc,a)

+ gab

(
∂c′

(
∂xa

∂xa′

∂xb

∂xb′

)
+ ∂b′

(
∂xa

∂xa′

∂xc

∂xc′

)
− ∂a′

(
∂xb

∂xb′

∂xc

∂xc′

))
Putting all of this together we find

Γa′

b′c′ = pa′

a p
b
b′pc

c′Γa
bc +

∂xa′

∂xa

∂2xa

∂xb′∂xc′ . (2.5)

(2.5) can be used to verify that∇bva is a tensor.

2.6.2 Covariant differentiation of other types of tensor

For instance: what is∇bu
a? Take an arbitrary covariant vector fieldva and consider

∇b (vau
a) = ∂b (vau

a). Then

∇b (vau
a) = ua∇bva + va∇bu

a

= ua∂bva − Γc
bavcu

a + va∇bu
a

= ua∂bva + va∂bu
a.

This is true for allva, so that

∇bu
a = ∂bu

a + Γa
bcu

c.

In general we get a+ sign for each contravariant index and a− sign for each
covariant index, that is

∇bT
c

a = ∂bT
c

a − Γd
baT

c
d + Γc

bdT
d

a .

We write∇b ( ) as( );b.

2.7 Differentiation along a curve: geodesics

We need a geometrical description of the rate of change of a physical quantity seen by
an observer moving along a pathxa(λ). This is theabsolute derivative, given by

D
dλ

va =
dxb

dλ
∇bv

a =
dxb

dλ
∂va

∂xb
+ Γa

bc

dxb

dλ
vc

=
dva

dλ
+ Γa

bc

dxb

dλ
vc.

Note that we only need to knowva along the path. We can similarly defineDdλ on
other fields. The absolute derivative of a tensor is again a tensor.
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A field va is said to beparallelly transportedalong a curvexa(λ) iff Dva

dλ = 0 (and
similarly for other types of tensor).

Note that parallel transport preserves lengths and angles. Ifva andwa are parallelly
transported, then

d
dλ

(vaw
a) =

dxb

dλ
∇b

(
gcdv

cwd
)

=
dxb

dλ
gcd;b + gcdw

d Dvc

dλ
+ gcdv

c Dwc

dλ
= 0.

We can apply the notation of absolute derivative to the tangent vectordxa

dλ . A curve
xa(λ) is said to beautoparalleliff

D
dλ

dxa

dλ
= 0,

that the tangent vector is parallelly transported along the curve. This is equivalent
to

d2xa

dλ2
+ Γa

bc

dxb

dλ
dxc

dλ
= 0,

which, sinceΓa
bc =

{
a
bc

}
, is the geodesic equation. This gives an alternative char-

acterisation of geodesics, andλ is called anaffine parameteralong the geodesic.
If γ is a geodesic with affine parameterλ then

d
dλ

(
gab

dxa

dλ
dxb

dλ

)
= 0,

so thatgab
dxa

dλ
dxb

dλ is a constant alongγ andλ is proportional to lengths (or proper
time τ ) alongγ.

The acceleration (vector) of a timelike curvexa(τ) with 4-velocityub = dxa

dτ is

ab =
Dub

dτ
=

d2xb

dτ2
+ Γb

cd

dxc

dτ
dxd

dτ
.

and so geodesics are unaccelerated curves (free fall).

2.8 Local inertial frames

We can now make our definition of a LIF more precise. We want to choose locally
inertial co-ordinatesxa near an eventP (xa = 0) such thatgab = ηab at P and that
particles moving throughP under gravity have no co-ordinate acceleration. We want
to arrangeΓa

bc = 0 (or equivalentlygab,c = 0) atP
In a LIF

• the metric looks as much as possible like the flat space metric

• geodesics become straight lines

• parallel transport, acceleration etc. acquire usual flat-space interpretations
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• covariant derivatives become partial derivatives.

To find inertial co-ordinates nearP we translate to putxa = 0 and then use a
linear transformation to givegab = ηab at P . Define0Γa

bc = Γa
bc|P . Then use the

transformationxa → ya with quadratic inverse

xa = ya − 1
2
0Γa

bcy
byc.

In the new co-ordinates,

gnew
ab =

∂xc

∂ya

∂xd

∂yb
gold

cd

=
(
δ c
a − 0Γc

aey
e
) (
δ d
b − 0Γd

bfy
f
) (
ηcd + gold

cd,gy
g + . . .

)
.

The terms linear inyc are(
−0Γd

acηbd − 0Γd
bcηad + gold

ab,c

)
yc = 0.

Hencegnew
ab = ηab + quadratic inyc — the co-ordinatesya provide a LIF nearP .

2.9 Curvature

The curvature of spacetime measures the non-commutation of covariant derivatives.
For a scalar fieldφ, φ;ab = φ;ba, but for a vector fieldva,

va
;bc − va

;cb =
(
Γa

be,c − Γa
ce,b + Γa

cdΓ
d
be − Γa

bdΓ
d
ce

)
ve

= Ra
ecbv

e,

where

Ra
ecb = Γa

be,c − Γa
ce,b + Γa

cdΓ
d
be − Γa

bdΓ
d
ce.

Ra
ecb is a tensor (by the quotient theorem) and is called the theRiemann curvature

tensor. It is constructed from the metric and its first and second covariant derivatives.
If the spacetime is flat we can choose Minkowskian co-ordinates to getgab = ηab so
thatRa

bcd = 0. ThereforeRa
bcd = 0 in all co-ordinates. The converse can be proved:

if Ra
bcd = 0 then the spacetime is flat.

In a LIF atP ,

Rabcd = 1
2 (gad,bc + gbc,ad − gac,bd − gbd,ac) .

This gives the symmetry properties

• Rabcd = R[ab]cd := 1
2 (Rabcd −Rbacd)

• Rabcd = Rab[cd]

• Rabcd = Rcdab

• Ra[bcd] := 1
3! (Rabcd +Racdb +Radbc −Racbd −Rabdc −Radcb) = 0. Using

the other symmetries ofRabcd, this can be equivalently written as

Rabcd +Racdb +Radbc = 0.
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Since symmetries of tensors are preserved by co-ordinate transformations, these
hold at any pointP in any co-ordinates. These symmetries imply thatRabcd has only
20 free components.

TheRicci tensorisRbd = Ra
bad. Note that

Rbd = gacRabcd = gacRcdab = Rdb.

Rbd therefore has only ten free components. TheRicci scalarisR = gbdRbd.

2.10 Geodesic deviation

Spacetime curvature produces relative acceleration of nearby test particles moving on
geodesics. For convenience in the derivation we replace “2 nearby test particles” with
“1 parameter family of geodesics”. Each geodesic is labelled by a parameters. We
label points on a given geodesic by proper timeτ measured from the origin.

Write ua = ∂
∂τ x

a(τ, s): the 4-velocity on the geodesic labelled bys. The geodesic
equation is

D
∂τ
ua :=

∂xb

∂τ
∇bu

a = ub∇bu
a = 0.

Defineξa = ∂
∂sx

a(τ, s). Then for small∆s, ∆sξa is a separation vector from the
geodesic labelled bys to the geodesic labelled bys+ ∆s.

Note that
∂ua

∂s
=
∂2xa

∂s∂τ
=
∂ξa

∂τ
,

and so

ξb∇bu
a =

∂xb

∂s
∇bu

a =
∂ua

∂s
+ Γa

bcξ
buc

=
∂ξa

∂τ
+ Γa

bcu
bξc =

∂xb

∂τ
∇bξ

a

= ub∇bξ
a.

We now prove (and then use!) thecurvature identity, which is valid for any vector
fieldsXa, Y b andZc:

Y b∇b (Zc∇cX
a)− Zc∇c

(
Y b∇bX

a
)

=

Y b (∇bZ
c) (∇cX

a) + Y bZc∇b∇cX
a

− Zc
(
∇cY

b
)
(∇bX

a)− ZcY b∇c∇bX
a

=
(
Y c∇cZ

b − Zc∇cY
b
)
∇bX

a + Y bZcRa
dbcX

d.
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Now takeXa = ua, Y b = ub andZc = ξc, so that

Zc∇cX
a = ξc∇cu

a = uc∇cξ
a

Y b∇bX
a = ub∇bu

a = 0

Y c∇cZ
b − Zc∇cY

b = uc∇cξ
b − ξc∇cu

b = 0.

Substituting these into the curvature identity we get

ub∇b (uc∇cξ
a) = Ra

dbcu
dubξc,

or
D2

∂τ2
ξa = Ra

dbcu
dubξc. (2.6)

This is theequation of geodesic deviation. It shows that the relative acceleration is
proportional to separation for two nearby test bodies. We have atruegravitational field
iff we have relative accelerations, iffRa

bcd 6= 0, iff spacetime is curved.
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Chapter 3

Vacuum gravitational fields

3.1 The vacuum field equations

We need to guess the field equations of General Relativity. We will use the Newtonian
limit to suggest the vacuum GR field equations and then compare the predictions of
these equations in the non-Newtonian case.

In the Newtonian limit (weak fields and low speeds),
∣∣∣ φ
c2

∣∣∣ � 1 and V
c � 1 (where

V is a “typical” speed). We will use co-ordinatesxa = (x, y, z, ct). From the equiva-
lence principle,g44 = −1− 2φ

c2 + . . . and it is reasonable to expect thatall deviations
from flatness are of orderφc2 .

A geodesic in Newtonian gravity hasτ ≈ t,
∣∣∣dxi

dt

∣∣∣ � c, and the spatial component

of the geodesic equation is

0 =
d2xi

dτ2
+ Γi

ab

dxa

dτ
dxb

dτ
≈ d2xi

dt2
+ Γi

44c
2.

Now
Γi

44 = 1
2g

i4g44,4 + 1
2g

ij(gj4,4 − g44,j) ≈ − 1
2δ

ijg44,j

asgij ≈ δij and the derivative∂4 should be smaller than derivatives∂i by a factor
of orderO(v

c ) � 1. ThusΓi
44 ≈ c−2φ,i and the geodesic equation is

d2xi

dt2
≈ −φ,i,

which is probably a good thing.Γi
44 are the only Christoffel symbols significant

for Newtonian gravity.
We now consider geodesic deviation in the Newtonian limit. Take a (spatial) sep-

aration vectorξa = (ξi, 0). Now ua = dxa

dτ = (0, c) at low speeds and the geodesic
deviation equation

D2ξa

dt2
= Ra

bdcu
budξc

gives d2ξi

dt2 ≈ c2Ri
44jξ

j . ThereforeRi
44j are the only components of the Riemann

tensor which are significant for Newtonian gravity. In the Newtonian limit

19
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Ra
bdc = Γa

bc,d − Γa
bd,c + Γa

dαΓα
bc − Γa

cαΓα
bd

≈ Γa
bc,d − Γa

bd,c.

ThereforeRi
44j ≈ Γi

4j,4 − Γi
44,j . If L is a typical lengthscale of the system then

all theΓa
bd areO( φ

c2L ) and soΓi
4j,4 = O( φ

c2L2
V
c ) butΓi

44,j = O( φ
c2L2 ). ThusRi

44j ≈
−Γi

44,j = −c−2φ,ij . The Newtonian geodesic deviation equation is therefore

d2ξi

dt2
≈ −φ,ijξ

j .

We base the vacuum GR equations on that for a Newtonian field,φ,ii = 0. In the
Newtonian limit we find that

R44 = Ri
4i4 ≈ c−2φ,ii = 0 in vacuum.

Since we wanttensorfield equations valid in all co-ordinate systems this suggests

Rab = 0 (3.1)

for the vacuum field equations (vacuum Einstein equations). SinceRab is sym-
metric we have 10 field equations, second order in the “gravitational potential”gab. A
highly nonlinear gravitational field can act as its own source.

3.2 The Schwarzschild metric

We look for a solution of the vacuum Einstein equations describing the gravitational
field outside a spherically symmetric body at rest. (It can be shown that) A static
spherically symmetric metric has the form

ds2 = eα(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
− eγ(r)dt2

in suitable co-ordinates. There are no cross termsdtd(space) since the metric must be
invariant undert→ −t.

The radial co-ordinater is chosen for simplicity — such that each sphere witht, r
constant has the intrinsic metricr2

(
dθ2 + sin2 θdφ2

)
. We can changer to r′(r), but

the metric loses its simplicity in this case.
The spherical symmetry forbids cross termsdrdθ (etc) and makesgrr a function

of r only.
To impose the vacuum Einstein equationsRab = 0 we need to find the Christoffel

symbols. It is most convenient to find them via the geodesic equations. We use an
alternate Lagrangian for the geodesics,

δ

∫ B

A

gabẋ
aẋb dλ = 0,

whereẋa ≡ dxa

dλ . It is easy to use the Euler-Lagrange equations to show that this
gives the geodesic equations. We find thatλmust be a multiple ofs or t along extremal
curves.
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In this spherically symmetric metric

L = eα(r)ṙ2 + r2
(
θ̇2 + sin2 θφ̇2

)
− eγ(r)ṫ2. (3.2)

The Euler-Lagrange equations give

2eαr̈ + eαα′ṙ2 − 2r
(
θ̇2 + sin2 θφ̇2

)
+ eγγ′ṫ2 = 0, (3.3)

2r2θ̈ + 4rṙθ̇ − 2r2 sin θ cos θφ̇2 = 0, (3.4)

2r2 sin2 θφ̈+ 4r sin2 θφ̇ṙ + 4r2 sin θ cos θθ̇φ̇ = 0, (3.5)

−2eγ ẗ− 2γ′eγ ṙṫ = 0. (3.6)

The only non-zero Christoffel symbols (wherexa = (r, θ, φ, t)) are:

Γ1
11 = 1

2α
′ Γ1

22 = −re−α Γ1
33 = −re−α sin2 θ

Γ1
44 = 1

2γ
′eγ−α Γ2

12 = r−1 Γ2
33 = − sin θ cos θ

Γ3
13 = r−1 Γ3

23 = cot θ Γ4
14 = 1

2γ
′

and the transposesΓa
bc = Γa

cb. We can now find the Ricci tensor, which has non-zero
components

R11 = − 1
2γ

′′ + 1
4α

′γ′ + 1
4γ

′2 + r−1α′ (3.7)

R22 = e−α
(

1
2r(α

′ − γ′)− 1
)

+ 1 (3.8)

R33 = sin2 θR22 (3.9)

R44 = eγ−α
(

1
2γ

′′ − 1
2α

′γ′ + 1
4γ

′2 + r−1γ′
)
. (3.10)

Equations (3.7) and (3.10) give usα + γ = κ (a constant). Substituting into (3.8)
we gete−α = 1− a

r (and we can check that this is consistent with (3.7)). Thus

ds2 =
dr2

1− a
r

+ r2
(
dθ2 + sin2 θdφ2

)
− eκ

(
1− a

r

)
dt2.

We normalizet to ordinary time asr → ∞, so thateκ = c2. In the far field,
gtt = −c2 + 2GM

r if the body has massM . Thusa = 2GM
c2 and we arrive at the

Schwarzschild metric

ds2 =
dr2

1− 2GM
c2r

+ r2
(
dθ2 + sin2 θdφ2

)
− c2

(
1− 2GM

c2r

)
dt2 (3.11)

(in Schwarzschild co-ordinates(r, θ, φ, t)).
This is only defined in the vacuum outside the body, but we can smoothly join it

onto a different solution in the region containing matter. There is an apparent singular-
ity at r = rS = 2GM

c2 , the Schwarzschild radius.
Usually the radius of matter is much greater than the Schwarzschild radius (for the

Sun,rS = 3km), but if there is vacuum down tor = rS we have a black hole.
It can be proven that spherical symmetry and the Einstein equations imply the static

Schwarzschild solution (even allowing time dependence). This is called Birkhoff’s
theorem.
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Direct computation shows thatRa
bdc has non-zero components and so this space-

time is genuinely curved. The space part has metric

ds2 =
dr2

1− 2GM
c2r

+ r2
(
dθ2 + sin2 θdφ2

)
and is also curved.
As expected the corrections to the flat space metric areO( φ

c2 ) in the far field.

3.3 Gravitational redshift in the Schwarzschild metric

The proper frequency as measured by the emitter isb1 = 2π
dτ1

= 2πc

p1(−gtt(r1))
1
2

. The

proper frequency measured by the reciever isb2 = 2π
dτ2

= 2πc

p1(−gtt(r2))
1
2

.

The ratio

b2
b1

=

√
gtt(r1)
gtt(r2)

=
(

1− 2GM
c2r1

) 1
2

(
1− 2GM

c2r2

)− 1
2

gives the gravitational redshift. This is observed for many white dwarf stars.

3.4 Particle paths in the Schwarzschild metric

In this section we use geometrical units in whichc = G = 1. We can obtain the
geodesics from the LagrangianL in (3.2). We do not attempt to solve the geodesic
equations directly but instead seek first integrals of the motion.

∂L
∂φ = 0 and sor2 sin2 θφ̇ = h, a constant. For a massive particle (λ = τ ) in the far

field (τ ≈ t), we see that this is just the angular momentum (per unit mass) about the
θ = 0 axis.

∂L
∂t = 0, so that

(
1− 2M

r

)
ṫ = E is a constant. This is the energy per unit mass.

For a slow moving massive particle,dt
dτ ≈

(
1− v2

)− 1
2

(
1 + M

r

)
≈ 1 + M

r + 1
2v

2.
Thus in the far field, for a slow moving massive particle we see thatE ≈ 1+ 1

2v
2− M

r ,
and so it is reasonable to associateE with the energy.

Finally, as particle paths are geodesics,

D
dλ

dxa

dλ
= 0

and so
d
dλ

(
gab

dxa

dλ
dxb

dλ

)
= 0.
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ThusL is conserved. In fact, for a timelike geodesicL = −1 and for a spacelike
geodesicL = 0.

We can further simplify the problem by taking the motion only in the equatorial
plane. We can initially arrangeθ = π

2 and θ̇ = 0 by rotating the co-ordinates. Note
that (3.4) is now automatically satisfied.

Using the conserved quantities we get the radial equation

− E2

1− 2M
r

+
ṙ2

1− 2M
r

+
h2

r2
=

{
−1 massive particle

0 massless particle.

In principle we can integrate this to getλ(r), φ(r) andt(r). For spatial orbits we
useu = r−1, so thatṫ = −hdu

dφ .
For a massive particle the radial equation becomes

h2

(
du
dφ

)2

= E2 − (1 + h2u2)(1− 2Mu).

Taking d
dφ of this and dividing bydu

dφ we get

d2u

dφ2
+ u =

M

h2
+ 3Mu2.

The massless version of this is

d2u

dφ2
+ u = 3Mu2.

3.5 Perihelion advance

Consider bound orbits of a slow massive particle at larger (r �M ). We seek to solve
the equation

d2u

dφ2
+ u =

M

h2
+ 3Mu2,

which we will do by perturbation methods. The zeroth approximation is

u =
1 + e cosφ

l
, l =

h2

m
.

We iterate this: the next approximation tou(φ) satisfies

d2u

dφ2
+ u =

1
l

+
3h2

l3
(
1 + 1

2e
2 + 2e cosφ+ 1

2e
2 cos 2φ

)
.

It will be a better approximation ifh� l. The solution of this equation is

lu = 1 + 3h2

l2 (1 + 1
2e

2) +
h2e

l

(
3φ sinφ− 1

2e cos 2φ
)

+ e cosφ.

Thee cosφ comes from the zeroth order solution. The aperiodicφ sinφ term cor-
responds to an altered periodicity. Note that

e cosφ+ 3h2e
l2 φ sinφ ≈ e cos

(
1− 3h2

l2

)
φ,
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and the periodicity inφ is approximately2π
(
1 + 3h2

l2

)
. If a is the semi-major axis

with

2a =
1
umin

+
1

umax
=

2l
1− e2

we can write the perihelion advance

6πh2

l2
=

6πM
l

=
6πM

a(1− e2)
,

which is 6πGM
c2a(1−e2) in MKS units.

The orbit is approximately elliptical, but is slowly rotating (precessing). The peri-
helion advance is 6πM

a(1−e2) per orbit.

In the solar system the largest effect is on Mercury — the residual precession (that
not accounted for byn-body Newtonian effects) of43′′ per century measured agrees
with this calculated result.

In a binary pulsar this effect is much bigger — about4◦ per year.

3.6 Light deflection

Consider a particle on a null geodesic, satisfying the equation

d2u

dφ2
+ u = 3Mu2.

The zeroth order approximation for the light path isu = sin φ
R . The next approxi-

mation is

u =
sinφ+ M

2R (3 + cos 2φ)
R

,

keeping the symmetry aboutφ = π
2 .

The light path is bent and we need to findε. We setu = 0 andsin ε ≈ ε, cos 2ε ≈ 1,
so thatε ≈ 2M

R . This is 2GM
c2R in MKS units.

This is observed in the solar system for light from stars which passes close to the
sun at eclipses.

More detailed analysis of light deflection shows that theO( φ
c2 ) corrections ingij

andgtt produce comparable contributions. In other theories of matter they combine
differently, for instance Nordström’s theory predicts no light deflection.
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3.7 Black holes and the event horizon

Consider the vacuum Schwarzschild metric nearr = 2M and look at particles/photons
falling towardsr = 2M . For radial infall we have(θ, φ) constant andh = 0. We want
to solve the equations (

1− 2M
r

)
dt
dλ

= E

and (
dr
dλ

)2

− E2 =

{
−

(
1− 2M

r

)
massive

0 massless.

In the massive caseλ = τ and so

dτ = − dr(
E2 − 1 + 2M

r

) 1
2
.

We clearly needE2 > 1. We see thatr → 2M in a finite proper time

τ = −
∫

dr(
E2 − 1 + 2M

r

) 1
2
.

The co-ordinate time is nastier. We have

dt = − Edr

(1− 2M
r )

(
E2 − 1 + 2M

r

) 1
2

and sot → ∞ asr → 2M . Something similar happens for photons. We conclude
thatt is not a good co-ordinate for analysing the metric nearr = 2M . Instead we use
a co-ordinate tied to the incoming particles. It is simplest to do photons.

Consider radially infalling photons, which satisfy the equation

dr
dt

= −
(

1− 2M
r

)
.

We can integrate this to findt = −r − 2M log(r − 2M) + v, wherev is con-
stant on photon paths. We change co-ordinates from(r, θ, φ, t) to (r, θ, φ, v), ingoing
Eddington-Finkelstein co-ordinates. The Schwarzschild metric becomes

ds2 = −
(

1− 2M
r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θ dφ2

)
.

This metric is well-behaved down tor = 0 (except for a trivial polar co-ordinate
singularity atθ = (0, π)). It hasdet gab < 0 and canonical form+++− everywhere in
v > 0. It provides the ingoing extension of the Schwarzschild metric throughr = 2M .
This is a simpleco-ordinate singularity.

However we find the curvature invariantRabdcR
abdc = 48M2

r6 and so there is a
genuine singularity of the spacetime atr = 0. This is acurvature singularityand
constitutes a boundary of the spacetime.

On any worldline we needds2 ≤ 0 (equality iff photons). Thus

−
(

1− 2M
r

)
dv2 + 2dvdr ≤ 0
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with equality iff we have photons withdθ = dφ = 0. In r > 2M the future light cone
is defined by

dv ≥ 2dr
1− 2M

r

dv ≥ 0.

In r < 2M we have

dr ≤
(

1− 2M
r

)
dv dv ≥ 0

and sodr ≤ 0. Thus any particle inr < 2M inevitably hasr decreasing to zero.
Light or particles cannot escape fromr < 2M , butcanclearly escape fromr > 2M .
The regionr < 2M is a black holeand the boundary surfacer = 2M is its event
horizon.



Chapter 4

Matter in General Relativity

Our final aim is to formulate the nongravitational laws of physics in curved spacetime
and to find the field equations of GR in the presence of matter.

4.1 Physical laws

The equivalence principle means that all laws have their usual special relativistic forms
in any LIFs. Moreover, the formulation of the laws should be the same in any reference
frame — tensorial. Therefore to find physical laws we take the special relativistic laws
and use them at the centre of a LIF to find the curved space covariant law.

In a LIF atP , gab = ηab, gab,d = 0 andΓa
bd = 0 and so covariant derivatives

reduce to partial derivatives. Therefore to make a special relativistic law covariant we
replace partial derivatives with covariant derivatives andηab with gab. This isminimal
coupling— we do not make unnecessary changes to the flat space laws.

For instance, consider free particle motion, which satisfies the equationd2xa

dτ2 = 0
in a local inertial frame. This becomes

d2xa

dτ2
+ Γa

bd

dxb

dτ
dxd

dτ
=

D
dτ

(
dxa

dτ

)
= 0,

which is the geodesic law.
A scalar fieldψ satisfying the wave equation�ψ = ηabψ,ab = 0 in flat spacetime

becomesgabψ;ab = 0 in curved spacetime.

4.2 Energy-momentum tensors

The matter content of spacetime is described by an energy-momentum tensorT ab.
Consider a continuous medium of densityρ, without pressure (“dust”).ρ is the

proper density measured in the local inertial rest frame. LetT ab = ρuaub = T ba. In a
local inertial frame we haveT ab

,b = 0 (by Navier-Stokes and the continuity equation)
and so the equations of motion in general co-ordinates areT ab

;b = 0. In the Newtonian
limit, with gravity, the space parts of this give Navier-Stokes and the time part gives
the continuity equation.

All forms of matter have symmetric energy-momentum tensorsT ab obeyingT ab
;b.

This is ultimately because all quantum fields have a Lagrangian from which one can
construct an energy-momentum tensor which is automatically conserved.

27
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4.3 The Einstein field equations

We wish to generalise the vacuum Einstein equationsRab = 0 to include matter sources
and reproduceφ,ii = 4πGρ in the Newtonian limit.

4.3.1 The Bianchi identities

In a local inertial frame centred atxa = 0 we havegab = ηab + quadratic andΓa
bd =

linear in a Taylor expansion aboutxa = 0. Then

Ra
bdc = Γa

bc,d − Γa
bd,c + quadratic

and so
Ra

bdc;e = Γa
bc,de − Γa

bd,ce + quadratic.

Hence at the origin of a local inertial frame,Ra
b[dc;e] = Γa

b[c,de] − Γa
b[d,ce] = 0.

But this is a tensorial equation, soRa
b[dc;ξ] = 0 everywhere. These are theBianchi

identities.
They can be equivalently written (using the symmetries ofRa

bdc) as

Ra
bdc;e +Ra

bce;d +Ra
bed;c = 0.

contracting ona andc, multiplying bygbe and renaming the indices gives

−Ra
b;a +R;b −Ra

b;a = 0.

We thus obtain thecontracted Bianchi identities,

∇b

(
Rab − 1

2g
abR

)
= 0

4.3.2 Field equations

The contracted Bianchi identities suggest taking the field equations

Rab − 1
2Rg

ab = κT ab.

These are theEinstein field equations. The Bianchi identities then imply the con-
servation of energy-momentum automatically. In fact it can be shown that the left hand
side of the Einstein equations is the only possible tensorial expression linear ingab,dc,
not involving higher derivatives, vanishing in flat spacetime and with identically zero
divergence.

One can verify the Newtonian limit: it turns out thatκ = 8πG
c4 (Einstein’s constant

of gravitation).
Gravitation is nonlinear. The gravitational field must carry energy, although this

can never be localised, since the geometry near any pointP looks Minkowskian in a
local inertial frame atP .
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