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Abstract

The law of gravitational attraction is a window on three formal approaches to
laws of nature based on Lorentz-invariance: Poincaré’s four-dimensional vector
space (1906), Minkowski’s matrix calculus and spacetime geometry (1908), and
Sommerfeld’s 4-vector algebra (1910). In virtue of a common appeal to 4-vectors
for the characterization of gravitational attraction, these three contributions track
the emergence and early development of four-dimensional physics.

Introduction

In July, 1905, Henri Poincaré (1854–1912) proposed two laws of gravitational at-
traction compatible with the principle of relativity and all astronomical observations
explained by Newton’s law. Two years later, in the fall of 1907, Albert Einstein (1879–
1955) began to investigate the consequences of the principle of equivalence for the be-
havior of light rays in a gravitational field. The following year, Hermann Minkowski
(1864–1909), Einstein’s former mathematics instructor, borrowed Poincaré’s notion
of a four-dimensional vector space for his new matrix calculus, in which he expressed
a novel theory of the electrodynamics of moving media, a spacetime mechanics, and
two laws of gravitational attraction. Following another two-year hiatus, Arnold Som-
merfeld (1868–1951) characterized the relationship between the laws proposed by
Poincaré and Minkowski, calling for this purpose both on spacetime diagrams and a
new 4-vector formalism.

Of these four efforts to capture gravitation in a relativistic framework, Einstein’s
has attracted the lion’s share of attention, and understandably so in hindsight, but at
the expense of a full understanding of what is arguably the most significant innova-
tion in contemporary mathematical physics: the four-dimensional approach to laws of
physics. In virtue of the common appeal made by Poincaré, Minkowski, and Som-
merfeld to four-dimensional vectors in their studies of gravitational attraction, their
respective contributions track the evolving form of four-dimensional physics in the
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2 THE 4D MOVEMENT IN GRAVITATION

early days of relativity theory.1 The objective of this paper is to describe in terms of
theorists’ intentions and peer readings the emergence of a four-dimensional language
for physics, as applied to the geometric and symbolic expression of gravitational ac-
tion.

The subject of gravitational action at the turn of the twentieth century is well-suited
for an investigation of this sort. This is not to say that the reform of Newton’s law was
a burning issue for theorists. While several theories of gravitation claimed corrob-
oration on a par with that of classical Newtonian theory, contemporary theoretical
interest in gravitation as a research topic–including the Lorentz-invariant variety–was
sharply curtailed by the absence of fresh empirical challenges to the inverse-square
law. Rather, in virtue of the stability of the empirical knowledge base, and two cen-
turies of research in celestial mechanics, the physics of gravitation was a well-worked,
stable terrain, familiar to physicists, mathematicians and astronomers alike.2

The leading theory of gravitation in 1905 was the one discovered by Isaac Newton
over two centuries earlier, based on instantaneous action at a distance. When Poincaré
sought to bring gravitational attraction within the purview of the principle of relativ-
ity, he saw it had to propagate with a velocity no greater than that of light in empty
space, such that a reformulation of Newton’s law as a retarded action afforded a simple
solution.

Newton’s law was the principal model for Poincaré, but it was not the only one.
With the success of Maxwell’s theory in explaining electromagnetic phenomena (in-
cluding the behavior of light) during the latter third of the nineteenth century, theories
of contiguous action gained greater favor with physicists. In 1892, the Dutch theorist
H.-A. Lorentz produced a theory of mobile charged particles interacting in an immo-
bile ether, that was an habile synthesis of Maxwell’s field theory and Wilhelm Weber’s
particle theory of electrodynamics. After the discovery of the electron in 1897, and
Lorentz’s elegant explanation of the Zeeman effect, certain charged microscopic par-
ticles were understood to be electrons, and electrons the building-blocks of matter.3

In this new theoretical context of ether and electrons, Lorentz derived the force
on an electron moving in microscopic versions of Maxwell’s electric and magnetic
fields. To determine the electromagnetic field of an electron in motion, Alfred Liénard
and Emil Wiechert derived a formula for a potential propagating with finite veloc-
ity. In virtue of these two laws, both of which fell out of a Lagrangian from Karl
Schwarzschild, the theory of electrons provided a means of calculating the force on a
charged particle in motion due to the fields of a second charged particle in motion.4

1In limiting the scope of this paper to the methods applied by their authors to the problem of gravi-
tation, four contributions to four-dimensional physics are neglected: that of Richard Hargreaves, based
on integral invariants (1908), two 4-vector systems due to Max Abraham (1910) and Gilbert Newton
Lewis (1910a), and Vladimir Varičak’s hyperbolic-function based approach (1910).

2For an overview of research on gravitation from 1850 to 1915, see Roseveare (1982). On early
20th-century investigations of gravitational absorption, see de Andrade Martins (1999). While only
Lorentz-covariant theories are considered in this paper, the relative acceptance of the principle of rel-
ativity among theorists is understood as one parameter among several influencing the development of
four-dimensional physics.

3Buchwald (1985, 242); Darrigol (2000, 325); Buchwald and Warwick (2001).
4Lorentz took the force per unit charge on a volume element of charged matter moving with velocity

v in the electric and magnetic fields d and h to be f D d C
1
c
Œv � h�, where the brackets indicate a

vector product (1904c, 2:156–7). For a comparison of electrodynamic Lagrangians from Maxwell to
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An electron-based analogy to gravitational attraction of neutral mass points was
then close at hand. Lorentz’s electron theory was held in high esteem by early twentieth-
century theorists, including both Poincaré and Minkowski, who naturally catered to
the most promising research program of the moment. They each proposed two force
laws: one based on retarded action at a distance, the other appealing directly to con-
tiguous action propagated in a medium. All four particle laws were taken up in turn
by Sommerfeld.5

Several other writers have discussed Poincaré’s and Minkowski’s work on gravita-
tion. Of the first four substantial synoptic reviews of the two theories, none employed
the notation of the original works, although this fact itself reflects the rapid evolu-
tion of formal approaches in physics. Early comparisons were carried out with either
Sommerfeld’s 4-vector formalism (Sommerfeld, 1910b; Kretschmann, 1914), a rel-
ative coordinate notation (de Sitter, 1911), or a mix of ordinary vector algebra and
tensor calculus (Kottler, 1922). No further comparison studies were published after
1922, excepting one summary (by North, 1965, 49–50), although since the 1960s, the
work of Poincaré and Minkowski has continued to incite historical interest.6 Sommer-
feld’s contribution, while it inflected theoretical practice in general, and contemporary
reception of Lorentz-covariant gravitation theory in particular, has been neglected by
historians.

The present study has three sections, beginning with Poincaré’s contribution, mov-
ing on in the second section to Minkowski’s initial response to Poincaré’s theory, and
a review of his formalism and laws of gravitation. A third section is taken up by Som-
merfeld’s interpretation of the laws proposed by Poincaré and Minkowski. The period
of study is thus bracketed on one end by the discovery of special relativity in 1905,
and on the other end by Sommerfeld’s paper. While the latter work did not spell the
end of either 4-vector formalisms or Lorentz-covariant theories of gravitation, it was
the first four-dimensional vector algebra, and represents a point of closure for a study
of the emergence of a conceptual framework for four-dimensional physics.

1 Henri Poincaré’s Lorentz-invariant laws of gravita-
tion

Poincaré’s memoir on the dynamics of the electron (1906), like Einstein’s relativity
paper of 1905, contains the fundamental insight of the physical significance of the
group of Lorentz transformations, not only for electrodynamics, but for all natural
phenomena. The law of gravitation, to no lesser extent than the laws of electrodynam-
ics, fell presumably within the purview of Einstein’s theory, but this is not a point that
Einstein, then working full time as a patent examiner in Bern, chose to elaborate upon

Schwarzschild, see Darrigol (2000, App. 9).
5On the Maxwellian approach to gravitation, see North (1965, chap. 3), Roseveare (1982, 129–31),

and Norton (1992, 32). The distinction drawn here between retarded action at a distance and field
representations reflects that of Lorentz (1904b), for whom this was largely a matter of convenience. On
nineteenth-century conceptions of the electromagnetic field, see Cantor and Hodge (1981).

6On Poincaré’s theory see Cunningham (1914, 173); Whitrow and Morduch (1965, 20); Harvey
(1965, 452); Cuvaj (1970, App. 5); Schwartz (1972); Zahar (1989, 192); Torretti (1996, 132). On
Minkowski’s theory see Weinstein (1914, 61); Pyenson (1985, 88); Corry (1997, 287).
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immediately. Poincaré, on the other hand, as Professor of Mathematical Astronomy
and Celestial Mechanics at the Sorbonne, could hardly finesse the question of grav-
itation. In particular, his address to the scientific congress at the St. Louis World’s
Fair, on 24 September, 1904, had pinpointed Laplace’s calculation of the propagation
velocity of gravitation as a potential spoiler for the principle of relativity.7

There may have been another reason for Poincaré to investigate a relativistic theory
of gravitation. In the course of his study of Lorentz’s contractile electron, Poincaré
noted that the required relations between electromagnetic energy and momentum were
not satisfied in general. Raised earlier by Max Abraham, the problem was considered
by Lorentz to be a fundamental one for his electron theory.8

Solving the stability problem of Lorentz’s contractile electron was a trivial matter
for Poincaré, as it meant transposing to electron theory a special solution to a general
problem he had treated earlier at some length: to find the equilibrium form of a rotating
fluid mass.9 He postulated a non-electromagnetic, Lorentz-invariant “supplementary”
potential that exerts a binding (negative) pressure inside the electron, and reduces the
total energy of the electron in an amount proportional to the volume decrease resulting
from Lorentz contraction. When combined with the electromagnetic field Lagrangian,
this binding potential yields a total Lagrangian invariant with respect to the Lorentz
group, as Poincaré required.

In accordance with the electromagnetic world-picture and the results of Kauf-
mann’s experiments, Poincaré supposed the inertia of matter to be exclusively of elec-
tromagnetic origin, and he set out, as he wrote in §6 of his paper,

to determine the total energy due to electron motion, the corresponding
action, and the quantity of electromagnetic momentum, in order to calcu-
late the electromagnetic masses of the electron.

Non-electromagnetic mass does not figure in this analysis, and consequently, one
would not expect the non-electromagnetic binding potential to contribute to the ten-
sorial electromagnetic mass of the electron, although Poincaré did not state this in so

7Laplace estimated the propagation velocity of gravitation to be 106 times that of light, and Poincaré
noted that such a signal velocity would allow inertial observers to detect their motion with respect to
the ether (1904, 312).

8Poincaré (1906, 153–154); Miller (1973, 230–233). Following Abraham’s account (1905, 205),
the problem may be presented in outline as follows (using modified notation and units). Consider a
deformable massless sphere of radius a and uniformly distributed surface charge, and assume that this is
a good model of the electron. The longitudinal mass mÎ of this sphere may be defined as the quotient of
external force and acceleration, mÎ D d jGj=d jvj, where G is the electromagnetic momentum resulting
from the electron’s self-fields, and v is electron velocity. Defining the electromagnetic momentum to be
G D

R
E�BdV , where E and B denote the electric and magnetic self-fields, and V is for volume, we let

c D 1, and find the longitudinal mass for small velocities to be mÎ D
e2

6�a

�
1 � v2

��3=2
. Longitudinal

electron mass may also be defined in terms of the electromagnetic energy W of the electron’s self-fields,
assuming quasistationary motion: mÎ D

1
jvj

dW
d jvj

, where W D
e2

6�a

�
1 � v2

��1=2
C

e2

24�a

�
1 � v2

�1=2
.

This leads, however, to an expression for longitudinal mass different from the previous one: mÎ D

e2

6�a

h�
1 � v2

��3=2
C

1
4

�
1 � v2

��1=2
i
. From the difference in these two expressions for longitudinal

mass, Abraham concluded that the Lorentz electron required the postulation of a non-electromagnetic
force and was thereby not compatible with a purely electromagnetic foundation of physics.

9See Poincaré (1885, 1902a,b). In the limit of null angular velocity, gravitational attraction can be
replaced by electrostatic repulsion, with a sign reversal in the pressure gradient.
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many words. Instead, immediately after obtaining an expression for the binding po-
tential, he derived the small-velocity, “experimental” mass from the electromagnetic
field Lagrangian alone, neglecting a contribution from the binding potential. The mass
of the slowly-moving Lorentz electron was then equal to the electrostatic mass, just as
one would want for an electromagnetic foundation of mechanics. This fortuitous re-
sult, which revised Lorentz’s electron mass value downward by a quarter, was obtained
independently by Einstein, using a method that did not constrain electron structure.10

Although the question of electron mass was far from resolved, Poincaré had shown
that the stability problem represented no fundamental obstacle to the pursuit of a new
mechanics based on the concept of a contractile electron.

With this obstacle out of the way, Poincaré proceeded as if the laws of mechanics
were applicable to the experimental mass of the electron.11 Noting that the nega-
tive pressure deriving from his binding potential is proportional to the fourth power
of mass, and furthermore, that Newtonian attraction is itself proportional to mass,
Poincaré conjectured that

there is some relation between the cause giving rise to gravitation and that
giving rise to the supplementary potential.

On the basis of a formal relation between experimental mass and the binding poten-
tial, in other words, Poincaré predicted the unification of his negative internal elec-
tron pressure with the gravitational force, in a future theory encompassing all three
forces.12

On this hopeful note, Poincaré began his memoir’s ninth and final section, entitled
“Hypotheses concerning gravitation.” Lorentz’s theory, Poincaré explained, promised
to account for the observed relativity of motion:

In this way Lorentz’s theory would fully explain the impossibility of de-
tecting absolute motion, if all forces were of electromagnetic origin.13

The hypothesis of an electromagnetic origin of gravitational force had been advanced
by Lorentz at the turn of the century. On the assumption that the force between “ions”
(later “electrons”) of unlike sign was of greater magnitude at a given separation than
that between ions of like sign (following Mossotti’s conjecture), Lorentz represented
gravitational attraction as a field-theoretical phenomenon analogous to electromag-
netism, reducing to the Newtonian law for bodies at rest with respect to the ether.

10Einstein (1905, 917). Poincaré also neglected the mass contribution of the binding potential in
his 1906–1907 Sorbonne lectures, according to student notes (Poincaré, 1953, 233). For reviews of
Poincaré’s derivation of the binding potential, see Cuvaj (1970, App. 11) and Miller (1973). On post-
Minkowskian interpretations of the binding potential (also known as Poincaré pressure), see Cuvaj
(1970, 203), Miller (1981, 382, n. 29), and Yaghjian (1992).

11In this paper Poincaré made no distinction between inertial and gravitational mass.
12As Cuvaj points out (1968, 1112), Poincaré may have found inspiration for this conjecture in Paul

Langevin’s remark that gravitation stabilized the electron against Coulomb repulsion. Unlike Langevin,
Poincaré anticipated a unified theory of gravitation and electrons, in the spirit of theories pursued later
by Gustav Mie, Gunnar Nordström, David Hilbert, Hans Reissner, Hermann Weyl and Einstein; for an
overview see Vizgin (1994).

13 “Ainsi la théorie de Lorentz expliquerait complètement l’impossibilité de mettre en évidence le
mouvement absolu, si toutes les forces étaient d’origine électromagnétique” (1906, 166).
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Lorentz’s theory tacitly assumed negative energy density for the “gravitational” field,
and a gravitational ether of huge intrinsic positive energy density, two well-known
sticking-points for Maxwell. Another difficulty stemmed from the dependence of
gravitational force on absolute velocities.14

Neither Lorentz’s gravitation theory nor Maxwell’s sticking-points were mentioned
by Poincaré in the ninth section of his memoir. Instead, he recalled a well-known em-
pirical fact: two bodies that generate identical electromagnetic fields need not exert
the same attraction on electrically neutral masses. Although Lorentz’s theory clearly
accounts for this fact, Poincaré concluded that the gravitational field was distinct from
the electromagnetic field. What this tells us is that Poincaré’s attention was not fo-
cused on Lorentz’s theory of gravitation.15

To Poincaré’s way of thinking, it was the impossibility of an electromagnetic re-
duction of gravitation that had driven Lorentz to suppose that all forces transform like
electromagnetic ones:

The gravitational field is therefore distinct from the electromagnetic field.
Lorentz was obliged thereby to extend his hypothesis with the assumption
that forces of any origin whatsoever, and gravitation in particular, are
affected by a translation (or, if one prefers, by the Lorentz transformation)
in the same manner as electromagnetic forces.16

It was the cogency of the latter hypothesis that Poincaré set out to examine in de-
tail, with respect to gravitational attraction. The situation was analogous to the one
Poincaré had encountered in the case of electron energy and momentum mentioned
above, where he had considered constraining internal forces of the electron to be
Lorentz-invariant. Such a constraint solved the problem immediately, but Poincaré
recognized that it was inadmissible nonetheless, because it violated Maxwell’s the-
ory (p. 136). A similar violation in the realm of mechanics could not be ruled out in
the case of gravitation, such that a careful analysis of the admissibility of the formal
requirement of Lorentz-invariance was called for.

14See Lorentz (1900); Havas (1979, 83); Torretti (1996, 131). On Lorentz’s precursors see Whittaker
(1951–1953, 2:149) and Zenneck (1903). Lorentz’s theory of gravitation failed to convince Oliver
Heaviside, who had carefully weighed the analogy from electromagnetism to gravitation (1893). In a
letter to Lorentz, Heaviside called into question the theory’s electromagnetic nature, by characterizing
Lorentz’s gravitational force as “action at a distance of a double kind” (18 July, 1901, Lorentz Papers,
Rijksarchief in Noord-Holland te Haarlem). Aware of these difficulties, Lorentz eventually discarded
his theory, citing its incompatibility with the principle of relativity (1914, 32).

15In his 1906–1907 Sorbonne lectures (1953), Poincaré discussed a different theory (based on an idea
due to Le Sage) that Lorentz had proposed in the same paper, without mentioning the Mossotti-style
theory. His first discussion of the latter theory was in 1908, when he considered it to be an authentic
relativistic theory, and one in which the force of gravitation was of electromagnetic origin (1908, 399).

16Poincaré (1906, 166). Poincaré’s account of Lorentz’s reasoning should be taken with a grain of
salt, as Lorentz made no mention of his theory of gravitation in the 1904 publication referred to by
Poincaré, “Electromagnetic phenomena in a system moving with any velocity less than that of light.”
While the electron theory developed in the latter paper did not address the question of the origin of
the gravitational force, it admitted the possibility of a reduction to electromagnetism (such as that
of his own theory) by means of the additional hypothesis referred to in the quotation: all forces of
interaction transformed in the same way as electric forces in an electrostatic system (Lorentz, 1904a,
§ 8). The contraction hypothesis formerly invoked to account for the null result of the Michelson-
Morley experiments, Lorentz added, was subsumed by the new hypothesis.
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Poincaré set out to determine a general expression for the law of gravitation in ac-
cordance with the principle of relativity. A relativistic law of gravitation, he reasoned,
must obey two constraints distinguishing it from the Newtonian law. First of all, the
new force law could no longer depend solely on the masses of the two gravitating
bodies and the distance between them. The force had to depend on their velocities, as
well. Furthermore, gravitational action could no longer be considered instantaneous,
but had to propagate with some finite velocity, so that the force acting on the passive
mass would depend on the position and velocity of the active mass at some earlier
instant in time. A gravitational propagation velocity greater than the speed of light,
Poincaré observed, would be “difficult to understand,” because attraction would then
be a function of a position in space not yet occupied by the active mass (p. 167).

These were not the only conditions Poincaré wanted to satisfy. The new law of
gravitation had also (1) to behave in the same way as electromagnetic forces under a
Lorentz transformation, (2) to reduce to Newton’s law in the case of relative rest of the
two bodies, and (3) to come as close as possible to Newton’s law in the case of small
velocities. Posed in this way, Poincaré noted, the problem remains indeterminate, save
in the case of null relative velocity, where the propagation velocity of gravitation does
not enter into consideration. Poincaré reasoned that if two bodies have a common
rectilinear velocity, then the force on the passive mass is orthogonal to an ellipsoid, at
the center of which lies the active mass.

Undeterred by the indeterminacy of the question in general, Poincaré set about
identifying quantities invariant with respect to the Lorentz group, from which he
wanted to construct a law of gravitation satisfying the constraints just mentioned. To
assist in the identification and interpretation of these invariants, Poincaré referred to a
space of four dimensions. “Let us regard,” he wrote,

x; y; z; t
p

�1

ıx; ıy; ız; ıt
p

�1

ı1x; ı1y; ı1z; ı1t
p

�1;

as the coordinates of 3 points P , P 0, P 00, in space of 4 dimensions. We
see that the Lorentz transformation is merely a rotation in this space about
the origin, regarded as fixed. Consequently, we will have no distinct in-
variants apart from the 6 distances between the 3 points P , P 0, P 00, con-
sidered separately and with the origin, or, if one prefers, apart from the 2
expressions:

x2
C y2

C z2
� t2; xıx C yıy C zız � tıt;

or the 4 expressions of like form deduced by arbitrary permutation of the
3 points P , P 0, P 00.17

17 “Regardons x, y, z, t
p

�1, ıx, ıy, ız, ıt
p

�1, ı1x, ı1y, ı1z, ı1t
p

�1, comme les coordonnées
de 3 points P , P 0, P 00 dans l’espace à 4 dimensions. Nous voyons que la transformation de Lorentz
n’est qu’une rotation de cet espace autour de l’origine, regardée comme fixe. Nous n’aurons donc pas
d’autres invariants distincts que les six distances des trois points P , P 0, P 00 entre eux et à l’origine,
ou, si l’on aime mieux, que les 2 expressions : x2 C y2 C z2 � t2, xıx C yıy C zız � tıt , ou les 4
expressions de même forme qu’on en déduit en permutant d’une manière quelconque les 3 points P ,
P 0, P 00” (1906, 168–9).
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Here Poincaré formed three quadruplets representing the differential displacement of
two point masses, with respect to a certain four-dimensional vector space, later called
a pseudo-Euclidean space.18 By introducing such a 4-space, Poincaré simplified the
task of identifying quantities invariant with respect to the Lorentz transformations,
the line interval of the new space being formally identical to that of a Euclidean 4-
space. He treated his three points P , P 0, and P 00 as 4-vectors, the scalar products of
which are invariant, just as in Euclidean space. In fact, Poincaré did not employ vector
terminology or notation in his study of gravitation, but provided formal definitions of
certain objects later called 4-vectors.

Poincaré’s habit, and that of the overwhelming majority of his French colleagues
in mathematical physics well into the 1920s, was to express ordinary vector quantities
in Cartesian coordinate notation, and to forgo notational shortcuts when differentiat-
ing, writing these operations out in full.19 Although he did not exclude symbols such
as� or � from his scientific papers and lectures, he employed them parsimoniously.20

In line with this practice, Poincaré did little to promote vector methods from his chair
at the Sorbonne. In twenty volumes of lectures on mathematical physics and celes-
tial mechanics, there is not a single propadeutic on quaternions or vector algebra.21

Poincaré deplored the “long calculations rendered obscure by notational complexity”
in W. Voigt’s molecular theory of light, and seems to have been of the opinion that in
general, new notation only burdened the reader.22

The point of forming quadruplets was to obtain a set of Lorentz-invariants corre-
sponding to the ten variables entering into the right-hand side of the new force law,
representing the squared distance in space and time of the two bodies and their ve-
locities (�, �, �, �1, �1, �1). How did Poincaré obtain his invariants? According to
the method cited above, six invariants were to be found from the distances between

18Poincaré’s three points P;P 0;P 00 may be interpreted in modern terminology as follows. Let the
spacetime coordinates of the passive mass point be A D .x0;y0; z0; t0/, with ordinary velocity � D

.ıx=ıt; ıy=ıt; ız=ıt/, such that at time t0 C ıt it occupies the spacetime point A0 D .x0 C ıx;y0 C

ıy; z0 C ız; t0 C ıt/. Likewise for the active mass point, B D .x0 C x;y0 C y; z0 C z; t0 C t/, with
ordinary velocity �1 D .ı1x=ı1t; ı1y=ı1t; ı1z=ı1t/, such that at time t0 C t C ı1t , it occupies the
spacetime point B0 D .x0 C x C ı1x;y0 C y C ı1y; z0 C z C ı1z; t0 C t C ı1t/. Poincaré’s three
quadruplets may now be expressed as position 4-vectors: P D B � A, P 0 D B0 � B, P 00 D A0 � A.

19While the first German textbook on electromagnetism to employ vector notation systematically
dates from 1894 (Föppl, 1894), the first comparable textbook in French was published two decades
later by Jean-Baptiste Pomey (1861–1943), instructor of theoretical electricity at the École supérieure
des Postes et Télégraphes in Paris (Pomey, 1914–1931, vol. 1).

20The Laplacian was expressed generally as r2 D @2=@x2 C @2=@y2 C @2=@z2, but by Poincaré as
�. The d’Alembertian, � � @2=@x2 C @2=@y2 C @2=@z2 � @2=@t2, became in Poincaré’s notation:
� � � � d2=dt2. Poincaré employed � in his lectures on electricity and optics (1901, 456), and was
the first to employ it in a relativistic context.

21Poincaré’s manuscript lecture notes for celestial mechanics, however, show that he saw fit to intro-
duce the quaternionic method to his students (undated notebook on quaternions and celestial mechanics,
32 pp., private collection, Paris; hpcd76, 78, 93, Henri Poincaré Archives, Nancy).

22Manuscript report of the Ph.D. thesis submitted by Henri Bouasse, 13 December, 1892, AJ165535,
Archives nationales, Paris. From Poincaré’s conservative habits regarding formalism, he appears
as an unlikely candidate at best for the development of a four-dimensional calculus circa 1905;
cf. H. M. Schwartz’s counterfactual conjecture: if Poincaré had adopted the ordinary vector calcu-
lus by the time he wrote his Rendiconti paper, “he would have in all likelihood introduced explicitly . . .
the convenient four-dimensional vector calculus” (1972, 1287, note 7).
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P , P 0, P 00, and the origin, or from the scalar products of P , P 0, and P 00. These six
intermediate invariants were then to be combined to obtain homogeneous invariants
depending on the duration of propagation of gravitational action and the velocities of
the two point masses. Poincaré skipped over the intermediate step and produced the
following four invariants, in terms of squared distance, distance and velocity (twice),
and the velocity product:

P
x2

� t2;
t �

P
x�p

1 �
P
�2
;

t �
P

x�1q
1 �

P
�2

1

;
1 �

P
��1q�

1 �
P
�2
� �

1 �
P
�2

1

� : (1)

The Lorentz-invariance and geometric significance of these quantities are readily ver-
ified.23 These four invariants (1), the latter three of which were labeled A, B, and C ,
formed the core of Poincaré’s constructive approach to the law of gravitation. (For
convenience, I refer to Poincaré’s four invariants [1] as his “kinematic” invariants.)

Inspection of the signs of these invariants reveals an inconsistency, the reason for
which is apparent once the intermediate calculations have been performed. Instead of
constructing his four invariants out of scalar products, Poincaré introduced an inver-
sion for A, B, and C .24 This sign inconsistency had no consequence on his search for
a relativistic law of gravitation, although it affected his final result, and perplexed at
least one of his readers, as I will show in section 3.

What Poincaré needed next for his force law was a Lorentz-invariant expression
for the force itself. Up to this point, he had neither a velocity 4-vector nor a force
4-vector definition on hand. Presumably, the search for Lorentz-invariant expressions
of force led him to define these 4-vectors. Earlier in his memoir (p. 135), Poincaré had
determined the Lorentz transformations of force density, but now he was interested in
the Lorentz transformations of force at a point. The transformations of force density:

X 0
D k.X C "T /; Y 0

D Y; Z0
D Z; T 0

D k.T C "X /; (2)

where k is the Lorentz factor, k D 1=
p

1 � "2, and " designates frame velocity, led
Poincaré to define a fourth component of force density, T , as the product of the force
density vector with velocity, T D

P
X �.25 He gave the same definition for the tem-

poral component of force at a point: T1 D
P

X1�.26 Next, dividing force density by
force at a point, Poincaré obtained the charge density �. Ostensibly from the transfor-

23The invariants (1) may be expressed in ordinary vector notation, letting
P

x D x,
P
� D v,P

�1 D v1, and for convenience, k D 1=
p

1 �
P
�2, k1 D 1=

q
1 �

P
�2

1
, such that the four quanti-

ties (1) read as follows: x2 � t2, k.t � xv/, k1.t � xv1/, kk1.1 � vv1/.
24Poincaré’s four kinematic invariants (1) are functions of the following six intermediate invariants:

a D x2 C y2 C z2 � t2, b D xıx C yıy C zız � tıt , c D xı1x C yı1y C zı1z � tı1t , d D

ıxı1x C ıyı1y C ızı1z � ıtı1t , e D ıx2 C ıy2 C ız2 � ıt2, f D ı1x2 C ı1y2 C ı1z2 � ı1t2.
In terms of the latter six invariants, the four kinematic invariants (1) may be expressed as follows:P

x2 � t2 D a, A D �b=
p

�e, B D �c=
p

�f , and C D �d=.
p

�e
p

�f /. For a slightly different
reconstruction of Poincaré’s kinematic invariants, see Zahar (1989, 193).

25This definition was remarked by Pauli (1921, 637).
26The same subscript denotes the force acting on the passive mass,

P
X1, and the velocity of the

active mass, �1.



10 THE 4D MOVEMENT IN GRAVITATION

mation for charge density, Poincaré singled out the Lorentz-invariant factor:27

�

�0
D

1

k.1 C �"/
D
ıt

ıt 0
: (3)

The components of a 4-velocity vector followed from the foregoing definitions of
position and force density:

The Lorentz transformation . . . will act in the same way on �, �, �, 1

as on ıx, ıy, ız, ıt , with the difference that these expressions will be
multiplied moreover by the same factor ıt=ıt 0 D 1=k.1 C �"/.28

Concerning the latter definition, Poincaré observed a formal analogy between the force
and force density 4-vectors, on one hand, and the position and velocity 4-vectors, on
the other hand: these pairs of vectors transform in the same way, except that one
member is multiplied by 1=k.1 C �"/. While this analogy may seem mathematically
transparent, it merits notice, as it appears to have eluded Poincaré at first.

With these four kinematic 4-vectors in hand, Poincaré defined a fifth quadruplet
Q with components of force density .X;Y;Z;T

p
�1/. Just as in the previous case,

the scalar products of his four quadruplets P , P 0, P 00, and Q were to deliver four new
Lorentz-invariants in terms of the force acting on the passive mass .X1;Y1;Z1/:29

P
X 2

1 � T 2
1

1 �
P
�2

;

P
X1x � T1tp
1 �

P
�2

;

P
X1�1 � T1p

1 �
P
�2

q
1 �

P
�2

1

;

P
X1� � T1

1 �
P
�2

: (4)

The fourth invariant in (4) was always null by definition of T1, leaving only three
invariants, denoted M , N , and P . (In order to distinguish these invariants from the
kinematic invariants, I will refer to [4] as Poincaré’s “force” invariants.)

Comparing the signs of the kinematic invariants (1) with those of the force invari-
ants (4), we see that Poincaré obtained consistent signs only for the latter invariants.
He must not have computed his force invariants in the same way as his kinematic in-
variants, for reasons that remain obscure. It is not entirely unlikely that in the course
of his analysis of the transformations of velocity and force, Poincaré realized that he
could compute the force invariants directly from the scalar products of four 4-vectors.
Two facts, however, argue against this reading. In the first place, Poincaré did not men-
tion that his force invariants were the scalar products of position, velocity and force
4-vectors. Secondly, he did not alter the signs of his kinematic invariants to make

27The ratio �=�0 is equal to the Lorentz factor, since in Poincaré’s configuration, " D ��. Some
writers hastily attribute a 4-current vector to Poincaré, the form �.�, �, �, i/ being implied by Poincaré’s
4-vector definitions of force density and velocity.

28“La transformation de Lorentz . . . agira sur �, �, �, 1 de la même manière que sur ıx, ıy, ız,
ıt , avec cette différence que ces expressions seront en outre multipliées par le même facteur ıt=ıt 0 D

1=k.1 C �"/” (1906, 169).
29The invariants (4) may be expressed in ordinary vector notation, recalling the definitions of note 23,

and letting
P

X1 D f1, and T1 D f1v: k2f2
1
.1 � v2/, kf1.x � vt/, kk1f1.v1 � v/, k2f1.v � v/. The

fourth invariant is obviously null in this form.
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them correspond to scalar products of position and velocity 4-vectors.30 The fact that
Poincaré’s kinematic invariants differ from products of 4-position and 4-velocity vec-
tors leads us to believe that when forming these invariants he was not thinking in terms
of 4-vectors.31

From this point on, Poincaré worked exclusively with arithmetic combinations of
three force invariants (M , N , P ) and four kinematic invariants (

P
x2 � t2, A, B,

C ) in order to come up with a relativistic law of gravitation. He had no further use,
in particular, for the four quadruplets he had identified in the process of constructing
these same invariants (corresponding to modern 4-position, 4-velocity, 4-force-density
and 4-force vectors), although in the end he expressed his laws of gravitation in terms
of 4-force components.

To find a law applicable to the general case of two bodies in relative motion,
Poincaré introduced constraints and approximations designed to reduce the complex-
ity of his seven invariants and recover the form of the Newtonian law in the limit of
slow motion .�1 � 1/. Poincaré naturally looked first to the velocity of propagation
of gravitation. He briefly considered an emission theory, where the velocity of grav-
itation depends on the velocity of the source. Although the emission hypothesis was
compatible with his invariants, Poincaré rejected this option because it violated his
initial injunction barring a hyperlight velocity of gravitational propagation.32 That left
him with a propagation velocity of gravitation less than or equal to that of light, and
to simplify his invariants Poincaré set it equal to that of light in empty space, such that
t D �

pP
x2 D �r . This stipulation reduced the total number of invariants from

seven to six.
With the propagation velocity of gravitation decided, Poincaré proceeded to con-

struct a force law for point masses. He tried two approaches, the first of which is
the most general. The basic idea of both approaches is to neglect terms in the square
of velocity occurring in the invariants, and to compare the resulting approximations
with their Newtonian counterparts. In the Newtonian scheme, the coordinates of the
active mass point differ from those in the relativistic scheme (cf. note 18); Poincaré

30Poincaré’s force invariants (4) are functions of the following six intermediate invariants: m D

k.X1ıx C Y1ıy C Z1ız � T1ıt/, n D k.X1ı1x C Y1ı1y C Z1ı1z � T1ı1t/, o D k.X1x C Y1y C

Z1z�T1t/, p D k2.X 2
1

CY 2
1

CZ2
1
�T 2

1
/, q D ıx2Cıy2Cız2�ıt2, and s D ı1x2Cı1y2Cı1z2�ı1t2.

Let the four force invariants (4) be denoted by M , N , P , and S , then M D p, N D o, P D n=
p

�s,
and S D m=

p
�q.

The same force invariants (4) are easily calculated using 4-vectors. Recalling the definitions in
notes 23 and 29, let R D .x; i t/, U D k.v; i/, U1 D k1.v1; i/, and F1 D k.f1; i f1v/, where

p
�1 D i .

Then the force invariants (4) may be expressed as scalar products of 4-vectors: M D F1F1, N D F1R,
P D F1U1, and S D F1U .

31The kinematic invariants (1) obtained by Poincaré differ from those obtained from the products of
4-position and 4-velocity, contrary to Zahar’s account (1989, 194). Recalling the 4-vectors R, U , U1

from note 30, we form the products: RR, RU , RU1, and U U1. In Poincaré’s notation, the latter four
products are expressed as follows:

P
x2

� t2; �
t �

P
x�p

1 �
P
�2
; �

t �
P

x�1q
1 �

P
�2

1

; �
1 �

P
��1q�

1 �
P
�2
� �

1 �
P
�2

1

� :
These invariants differ from those of Poincaré (1) only by the sign of A, B, and C , as noted by Som-
merfeld (1910b, 686).

32An emission theory was proposed a few years later by Walter Ritz; see Ritz (1908).
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took the former to be .x0 C x1;y0 C y1; z0 C z1/ at the instant of time t0, where the
subscript 0 corresponds to the position of the passive mass point, and the coordinates
with subscript 1 are found by assuming uniform motion of the source:

x D x1 � �1r; y D y1 � �1r; z D z1 � �1r; r D r1 �
P

x�1: (5)

In the first approach, Poincaré made use of both the kinematic and force invariants.
Substituting the values (5) into the kinematic invariants A, B, and C from (1) and the
force invariants M , N , and P from (4), neglecting terms in the square of velocity,
Poincaré obtained their sought-after Newtonian counterparts. Replacing the force vec-
tor occurring in the transformed force invariants by Newton’s law (

P
X1 D �1=r2

1 ),
and rearranging, Poincaré obtained three quantities in terms of distance and veloc-
ity.33 He then re-expressed these quantities in terms of two of his original kinematic
invariants, A and B, and equated the three resulting kinematic invariants to their cor-
responding original force invariants (4). He now had the solution in hand; three ex-
pressions relate his force invariants (containing the force vector

P
X1) to two of his

kinematic invariants:

M D
1

B4
; N D

CA

B2
; P D

A � B

B3
: (6)

He noted that complementary terms could be entertained for the three relations (6),
provided that they were certain functions of his kinematic invariants A, B, and C .
Then without warning, he cut short his demonstration, remarking that the gravitational
force components would take on imaginary values:

The solution (6) appears at first to be the simplest, nonetheless, it may
not be adopted. In fact, since M , N , P are functions of X1, Y1, Z1,
and T1 D †X1�, the values of X1, Y1, Z1 can be drawn from these three
equations (6), but in certain cases these values would become imaginary.34

The quoted remark seems to suggest that for selected values of the particle velocities,
the force turns out to be imaginary. However, the real difficulty springs from the
equation M D 1=B4, which allows for a repulsive force. The general approach failed
to deliver.35

The fact that Poincaré published the preceding derivation may be understood in
one of two ways. On the one hand, there is a psychological explanation: Poincaré’s

33Using (5), Poincaré found the transformed force invariants 1=r4
1

, �1=r1 �
P

x1.� � �1/=r2
1

, andP
x1.� � �1/=r3

1
.

34“Au premier abord, la solution (6) paraît la plus simple, elle ne peut néanmoins être adoptée; en
effet, comme M , N , P sont des fonctions de X1, Y1, Z1, et de T1 D †X1�, on peut tirer de ces trois
équations (6) les valeurs de X1, Y1, Z1; mais dans certains cas ces valeurs deviendraient imaginaires”
(1906, 172).

35Replacing A and B in (6) by their definitions results in the three equations: M D k2f2
1
.1 � v2/ D

1=k4.r C xv1/
4, N D f1.x C vr/ D �.r C xv/=Œk2

1
.r C xv1/

2�, P D kk1f1.v1 � v/ D Œk.r C

xv/ � k1.r C xv1/�=Œk
3
1
.r C xv1/

3�. Equations N and P imply an attractive force for all values of v
and v1, while M leads to the ambiguously-signed solution: f1 D ˙1=Œk2.r C xv1/

2�. Presumably,
the superfluous plus sign in (6) is an indication of Poincaré’s preoccupation with obtaining a force of
correct sign.
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habit, much deplored by his peers, was to present his findings more or less in the order
in which he found them. The case at hand may be no different from the others. On the
other hand, Poincaré may have felt it worthwhile to show that the general approach
breaks down. From the latter point of view, Poincaré’s result is a positive one.

For his second attack on the law of gravitation, Poincaré adopted a less general
approach. He knew where his first approach had become unsuitable, and consequently,
leaving aside his three force invariants, he fell back on the form of his basic force 4-
vector, which he now wrote in terms of his kinematic invariants, re-expressed in terms

of r D �t , k0 D 1=
p

1 � �2, and k1 D 1=

q
1 � �2

1 .36 He assumed the gravitational
force on the passive mass (moving with velocity �, �, �) to be a function of the distance
separating the two mass points, the velocity of the passive mass point, and the velocity
of the source, with the form:

X1 D x
˛

k0

C �ˇ C �1

k1

k0


;

Y1 D y
˛

k0

C �ˇ C �1

k1

k0


;

Z1 D z
˛

k0

C �ˇ C �1

k1

k0


;

T1 D �r
˛

k0

C ˇ C
k1

k0


;

(7)

where ˛, ˇ, and 
 denote functions of the kinematic invariants.37 By definition, the
component T1 is the scalar product of the ordinary force and the velocity of the passive
mass point, T1 D

P
X1�, such that the three functions ˛, ˇ, 
 satisfy the equation:

�A˛ � ˇ � C
 D 0: (8)

Poincaré further assumed ˇ D 0, thereby eliminating a term depending on the velocity
of the passive mass, and fixing the value of 
 in terms of ˛. Applying the same slow-
motion approximation and translation (5) as in his initial approach, Poincaré found
X1 D ˛x1, and by comparison with Newton’s law, ˛ reduces to �1=r3

1 . In terms of
the kinematic invariants (1), this relation was expressed as ˛ D 1=B3, and the law of
gravitation (7) took on the form:38

X1 D
x

k0B3
� �1

k1

k0

A

B3C
;

Y1 D
y

k0B3
� �1

k1

k0

A

B3C
;

Z1 D
z

k0B3
� �1

k1

k0

A

B3C
;

T1 D �
r

k0B3
�

k1

k0

A

B3C
:

(9)

Inspection of Poincaré’s gravitational force (9) reveals two components: one parallel
to the position 4-vector between the passive mass and the retarded source, and one
parallel to the source 4-velocity. The law was not unique, Poincaré noted, and it
neglected possible terms in the velocity of the passive mass.

36A D �k0.r C
P

x�/, B D �k1.r C
P

x�1/, and C D k0k1.1 �
P

x��1/.
37Using modern 4-vector notation, and denoting Poincaré’s gravitational force 4-vector F1 D

k0.X1;Y1;Z1; iT1/, equation (7) may be expressed: F1 D ˛R C ˇU C 
U1, where R denotes a
lightlike 4-vector between the mass points, ˛, ˇ, 
 stand for undetermined functions of the three kine-
matic invariants A, B, and C , while U D k0.v; i/, U1 D k1.v1; i/ designate the 4-velocities of the
passive and active mass points, respectively.

38In ordinary vector form, recalling the definitions in notes 23 and 29, the spatial part of Poincaré’s
law is expressed as follows: f1 D �Œ.x C rv1/C v � .v1 � x/�=Œkk3

1
.r C xv1/

3.1 � vv1/�. Cf. Zahar
(1989, 199).
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Poincaré underlined the open-ended nature of his solution by proposing a second
gravitational force law. Rearranging (9) and replacing the factor 1=B3 by C=B3, such
that the force depended linearly on the velocity of the passive mass, Poincaré arrived
at a second law of gravitation:39

X1 D
�

B3
C
��0 � ��0

B3
;

Y1 D
�

B3
C
��0 � ��0

B3
;

Z1 D
�

B3
C
��0 � ��0

B3
;

(10)

where

k1.x C r�1/ D �;

k1.�1z � �1y/ D �0;

k1.y C r�1/ D �;

k1.�1x � �1z/ D �0;

k1.z C r�1/ D �;

k1.�1y � x�1/ D �0:

Poincaré neglected to write down the expression for T1, probably because of its com-
plicated form. (For the sake of simplicity, I refer to [9] and [10], including the lat-
ter’s neglected fourth component, as Poincaré’s first and second law.) The unprimed
triplet B�3.�; �; �/ supports what Poincaré termed a “vague analogy” with the me-
chanical force on a charged particle due to an electric field, while the primed triplet
B�3.�0; �0; �0/ supports an analogy to the mechanical force on a charged particle due
to a magnetic field. He identified the fields as follows:

Now �, �, �, or
�

B3
,
�

B3
,
�

B3
, is an electric field of sorts, while �0, �0, �0,

or rather
�0

B3
,
�0

B3
,
�0

B3
, is a magnetic field of sorts.40

While Poincaré wrote freely of a “gravity wave” (onde gravifique), he abstained from
speculating on the nature of the field referred to here. As one of the first theorists
(with FitzGerald and Lorentz) to have employed retarded potentials in Maxwellian
electrodynamics, Poincaré must have considered the possibility of introducing a cor-
responding gravitational 4-potential.41 But as matters stood when Poincaré submitted
this paper for publication in July, 1905, he was not in a position to elaborate the
physics of fields in four-dimensional terms, since he possessed neither a 4-potential
nor a 6-vector.

39This law may be reformulated using the vectors defined in notes 23 and 29, and neglecting (with
Poincaré) the component T1: f1 D �Œ.x C rv1/C v � .v1 � x/�=Œk2

1
.r C xv1/

3�. Cf. Zahar (1989, 199).
Comparable expressions were developed by Lorentz (1910, 1239) and Kottler (1922, 169).

40“Alors �, �, �, ou �=B3, �=B3, �=B3, est une espèce de champ électrique, tandis que �0, �0, �0,
ou plutôt �0=B3, �0=B3, �0=B3, est une espèce de champ magnétique” (1906, 175).

41Whittaker (1951–1953, 1:394, note 3). A 4-potential corresponding to Poincaré’s second law (10)
was given by Kottler (1922, 169). Additional assumptions are required in order to identify a “gravito-
magnetic” field with a term arising from the Lorentz transformation of force: v�.v1 �x/, or the second
term of the 3-vector version of (10) (neglecting the global factor; see note 39). In particular, it must
be assumed that when the sources of the “gravito-electric” field B�3.�; �; �/ are at rest, the force on a
mass point m is f D mB�3.�; �; �/, independent of the velocity of m. For a detailed discussion, see
Jackson (1975, 578).
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Poincaré had realized the objective of formulating a Lorentz-invariant force of
gravitation. As we have seen, he surpassed this objective by identifying not one but
two such force laws. Designed to reduce to Newton’s law in the first order of approxi-
mation in �1 (or particle velocity divided by the speed of light), Poincaré’s laws could
diverge from Newton’s only in second-order terms. The argument satisfied Poincaré,
who did not report any precise numerical results, explaining that this would require
further investigation. Instead, he noted that the disagreement would be ten thousand
times smaller than a first-order difference stemming from the assumption of a propa-
gation velocity of gravitation equal to that of light, “ceteris non mutatis” (p. 175). His
result contradicted Laplace, who had predicted an observable first-order effect aris-
ing from just such an assumption. At the very least, Poincaré had demonstrated that
Laplace’s argument was not compelling in the context of the new dynamics.42

On several occasions over the next seven years, Poincaré returned to the question
of gravitation and relativity, without ever comparing the predictions of his laws with
observation. During his 1906–1907 Sorbonne lectures, for example, when he devel-
oped a general formula for perihelion advance, Poincaré used a Lagrangian approach,
rather than one or the other of his laws (1953, 238). Student notes of this course in-
dicate that he stopped short of a numerical evaluation for the various electron models
(perhaps leaving this as an exercise). However, Poincaré later provided the relevant
numbers in a general review of electron theory. Lorentz’s theory called for an extra
700 centennial advance by Mercury’s perihelion, a figure slightly greater than the one
for Abraham’s non-relativistic electron theory.43 According to the best available data,
Mercury’s anomalous perihelial advance was 4200, prompting Poincaré to remark that
another explanation would have to be found in order to account for the remaining
seconds of arc. Astronomical observations, Poincaré concluded soberly, provided no
arguments in favor of the new electron dynamics.44

Poincaré capsulized the situation of his new theory in a fable in which Lorentz
plays the role of Ptolemy, and Poincaré that of an unknown astronomer appearing
sometime between Ptolemy and Copernicus. The unknown astronomer notices that
all the planets traverse either an epicycle or a deferent in the same lapse of time, a
regularity later captured in Kepler’s second law. The analogy to electron dynamics
turns on a regularity discovered by Poincaré in his study of gravitation:

If we were to admit the postulate of relativity, we would find the same
number in the law of gravitation and the laws of electromagnetism, which
would be the velocity of light; and we would find it again in all the other
forces of any origin whatsoever.45

42Poincaré reviewed Laplace’s argument in his 1906–1907 lectures (1953, 194). For a contemporary
overview of the question of the propagation velocity of gravitation see Tisserand (1889–1896, 1:511).

43Fritz Wacker, a student of Richard Gans in Tübingen, published similar results in 1906.
44Poincaré (1908, 400). Poincaré explained to his students that Mercury’s anomalous advance could

plausibly be attributed to an intra-Mercurial matter belt (1953, 265), an idea advanced forcefully by
Hugo von Seeliger in 1906 (Roseveare, 1982, 78). In a lecture delivered in September, 1909, Poincaré
revised his estimate of the relativistic perihelial advance downward slightly to 600 (Poincaré, 1909).

45“[S]i nous admettions le postulat de relativité, nous trouverions dans la loi de gravitation et dans les
lois électromagnétiques un nombre commun qui serait la vitesse de la lumière ; et nous le retrouverions
encore dans toutes les autres forces d’origine quelconque” (1906, 131).
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This common propagation velocity of gravitational action, of electromagnetic fields,
and of any other force, could be understood in one of two ways:

Either everything in the universe would be of electromagnetic origin, or
this aspect–shared, as it were, by all physical phenomena–would be a
mere epiphenomenon, something due to our methods of measurement.46

If the electromagnetic worldview were valid, all particle interactions would be gov-
erned by Maxwell’s equations, featuring a constant propagation velocity. Otherwise,
the common propagation velocity of forces had to be a result of a measurement con-
vention. In relativity theory, as Poincaré went on to point out, the measurement con-
vention to adopt was one defining lengths as equal if and only if spanned by a light
signal in the same lapse of time, as this convention was compatible with the Lorentz
contraction. There was a choice to be made between the electromagnetic worldview
(as realized in the electron models of Abraham and Bucherer-Langevin) and the pos-
tulate of relativity (as upheld by the Lorentz-Poincaré electron theory). Although
Poincaré favored the latter theory, he felt that its destiny was to be superseded, just as
Ptolemaic astronomy was superseded by Copernican heliocentrism.

The failure of his Lorentz-invariant law of gravitation to explain the anomalous ad-
vance of Mercury’s perihelion probably fed Poincaré’s dissatisfaction with the Lorentz-
Poincaré theory in general, but what he found particularly troubling at the time was
something else altogether: the discovery of magneto-cathode rays. There is no place
in the Lorentz-Poincaré electron theory for rays that are both neutral (as Paul Villard
reported in June, 1904) and deflected by electric and magnetic fields, which is prob-
ably why Poincaré felt the “entire theory” to be “endangered” by magneto-cathode
rays.47

Uncertainty over the empirical adequacy of the Lorentz-Poincaré electron theory
may explain why the Rendiconti memoir was Poincaré’s last in the field of electron
physics. But is it enough to explain his disinterest in the development of a four-
dimensional formalism? One year after the publication of his article on electron dy-
namics, Poincaré commented:

A translation of our physics into the language of four-dimensional ge-
ometry does in fact appear to be possible; the pursuit of this translation
would entail great pain for limited profit, and I will just cite Hertz’s me-
chanics, where we see something analogous. Meanwhile, it seems that
the translation would remain less simple than the text and would always
have the feel of a translation, and that three-dimensional language seems
the best suited to the description of our world, even if one admits that this
description may be carried out in another idiom.48

46“Ou bien il n’y aurait rien au monde qui ne fût d’origine électromagnétique. Ou bien cette partie qui
serait pour ainsi dire commune à tous les phénomènes physiques ne serait qu’une apparence, quelque
chose qui tiendrait à nos méthodes de mesure” (1906, 131–132).

47Poincaré (1906, 132); Stein (1987, 397, note 29). On the history of magneto-cathode rays, see
Carazza and Kragh (1990).

48“Il semble bien en effet qu’il serait possible de traduire notre physique dans le langage de la
géométrie à quatre dimensions; tenter cette traduction ce serait se donner beaucoup de mal pour peu de
profit, et je me bornerai à citer la mécanique de Hertz où l’on voit quelque chose d’analogue. Cepen-
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Poincaré clearly saw in his own work the outline of a four-dimensional formalism
for physics, yet he saw no future in its development, and this, entirely apart from the
question of the empirical adequacy of the Lorentz-Poincaré theory.

Why did Poincaré discount the value of a language tailor-made for relativity?
Three sources of disinterest in such a prospect spring to mind, the first of which stems
from his conventionalist philosophy of science. Poincaré recognized an important role
for notation in the exact sciences, as he famously remarked with respect to Edmond
Laguerre’s work on quadratic forms and Abelian functions that

in the mathematical sciences, having the right notation is philosophically
as important as having the right classification in the life sciences.49

More than likely, Poincaré was aware of the philosophical implications of a four-
dimensional notation for physics, although he had yet to make his views public. But
given his strong belief in the immanence of Euclidean geometry’s fitness for physics,
he must have considered the chances for success of such a language to be vanishingly
small.50

A second source for Poincaré’s disinterest in four-dimensional formalism is his
practice of physics. As mentioned above, Poincaré dispensed with vectorial systems
(and most notational shortcuts); he even avoided writing i for

p
�1. When considered

in conjunction with his conventionalist belief in the suitability of Euclidean geometry
for physics, this conservative habit with respect to notation makes Poincaré appear all
the less likely to embrace a four-dimensional language for physics.

The third possible source of discontent is Poincaré’s vexing experience with invari-
ants of pseudo-Euclidean 4-space. As shown above (p. 12), Poincaré’s first approach
to the construction of a law of gravitation ended unsatisfactorily, and the failure of
Poincaré’s intuition in this instance may well have colored his view of the prospects
for a four-dimensional physics.

An immediate consequence of Poincaré’s refusal to work out the form of four-
dimensional physics was that others could readily pick up where he left off. Roberto
Marcolongo (1862–1945), Professor of Mathematical Physics in Messina, and a lead-
ing proponent of vectorial analysis, quickly discerned in Poincaré’s paper a potential
for formal development. Marcolongo referred, like Poincaré, to a four-dimensional
space with one imaginary axis, but defined the fourth coordinate as the product of
time t and the negative square root of �1 (i.e., �t

p
�1 instead of t

p
�1). After form-

ing a 4-vector potential out of the ordinary vector and scalar potentials, and defining
a 4-current vector, he expressed the Lorentz-covariance of the equations of electrody-
namics in matrix form. No other applications were forthcoming from Marcolongo, and
a failure to produce further 4-vector quantities and functions limited the scope of his

dant, il semble que la traduction serait toujours moins simple que le texte, et qu’elle aurait toujours l’air
d’une traduction, que la langue des trois dimensions semble la mieux appropriée à la description de
notre monde, encore que cette description puisse se faire à la rigueur dans un autre idiome” (1907, 15).
See also Walter (1999b, 98), and for a different translation, Galison (1979, 95). On Hertz’s mechanics,
see Lützen (1999).

49“[D]ans les Sciences mathématiques, une bonne notation a la même importance philosophique
qu’une bonne classification dans les Sciences naturelles” (1898–1905, 1:x).

50Poincaré’s analysis of the concepts of space and time in relativity theory appeared in 1912. On the
cool reception among mathematicians of Poincaré’s views on physical geometry, see Walter (1997).
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contribution, which went unnoticed outside of Italy.51 Nothing further on Poincaré’s
method appeared in print until April, 1908, when Hermann Minkowski’s paper on the
four-dimensional formalism and its application to the problem of gravitation appeared
in the Göttinger Nachrichten.

2 Hermann Minkowski’s spacetime laws of gravitation

The young Hermann Minkowski, second son of an immigrant family of Russian Jews,
attended the Altstädtische Gymnasium in Königsberg (later Kaliningrad). Shortly af-
ter graduation, Minkowski submitted an essay for the Paris Academy’s 1882 Grand
Prize in Mathematical Sciences. His entry on quadratic forms shared top honors with
a submission by the seasoned British mathematician Henry J. S. Smith, his senior by
thirty-eight years.52 The young mathematician went on to study with Heinrich Weber
in Königsberg, and with Karl Weierstrass and Leopold Kronecker in Berlin. In the
years following the prize competition, Minkowski became acquainted with Poincaré’s
writings on algebraic number theory and quadratic forms, and in particular, with a pa-
per in Crelle’s Journal containing some of the results from Minkowski’s prize paper,
still in press. To his friend David Hilbert he confided the “angst and alarm” brought on
by Poincaré’s entry into his field of predilection; with his “swift and versatile” energy,
Poincaré was bound to bring the whole field to closure, or so it seemed to him at the
time.53 From the earliest, formative years of his scientific career, Minkowski found in
Poincaré–his senior by a decade–a daunting intellectual rival.

While Minkowski had discovered in Poincaré a rival, he was soon to find that that
the Frenchman could also be a teacher, from whom he could learn new analytical
skills and methods. Named Privatdozent in Bonn in 1887, Minkowski contributed to
the abstract journal Jahrbuch der Fortschritte der Mathematik, and in 1892, took on
the considerable task of summarizing the results of the paper for which Poincaré was
awarded the King Oscar II Prize (Minkowski, 1890–1893). The mathematics Poincaré
created in his prize paper (the study of homoclinic points in particular) was highly in-
novative, and at the same time, difficult to follow. Among those whom we know had
trouble understanding certain points of Poincaré’s prize memoir were Charles Her-
mite, Gustav Mittag-Leffler, and Karl Weierstrass, who happened to constitute the
prize committee.54 Minkowski, however, welcomed the review as a learning opportu-
nity, as he wrote to his friend and former teacher, Adolf Hurwitz:

Poincaré’s prize paper is also among the works I have to report on for the
Fortschritte. I am quite fond of it. It is a fine opportunity for me to get

51Marcolongo (1906). This paper later gave rise to a priority claim for a slightly different substi-
tution: u D i t (Marcolongo to Arnold Sommerfeld, 5 May, 1913, Archives for History of Quantum
Physics 32). On Marcolongo’s paper see also Maltese (2000, 135).

52Rüdenberg (1973); Serre (1993); Strobl (1985).
53Minkowski to Hilbert, 14 February, 1885, Minkowski (1973, 30). Minkowski’s fears turned out to

be for naught, as Poincaré pursued a different line of research (Zassenhaus, 1975, 446). On Minkow-
ski’s early work on the geometry of numbers see Schwermer (1991); on later developments, see Krätzel
(1989).

54See Gray (1992) and the reception study by Barrow-Green (1997, chap. 6).
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acquainted with problems I have not worried about too much up to now,
since I will naturally set a positive goal of making my case well.55

In the 1890s, building on his investigations of the algebraic theory of quadratic
forms, Minkowski developed the geometric analog to this theory: geometrical num-
ber theory. A high point of his efforts in this new field, and one which contributed
strongly to the establishment of his reputation in mathematical circles, was the publi-
cation of Geometrie der Zahlen (1896). The same year, Minkowski accepted a chair
at Zurich Polytechnic, whereby he rejoined Hurwitz. Minkowski’s lectures on mathe-
matics and mathematical physics attracted a small following of talented and ambitious
students, including the future physicists Walter Ritz and Albert Einstein, and the bud-
ding mathematicians Marcel Grossmann and Louis Kollros.56

Minkowski’s lectures on mechanics in Zurich throw an interesting light on his
view of symbolic methods in physics at the close of the nineteenth century. The the-
ory of quaternions, he noted in 1897, was used nowhere outside of England, due to
its “relatively abstract character and inherent difficulty.”57 Two of its fundamental
concepts, scalars and vectors, had nevertheless gained broad approval among physi-
cists, Minkowski wrote, and had found “frequent application especially in the theory
of electricity.”58 Applications of quaternions to problems of physics were advanced in
Germany with the publication of Felix Klein and Arnold Sommerfeld’s Theorie des
Kreisels, a work referred to in Minkowski’s lecture notes of 1898–1899.59 Minkow-
ski admired Klein and Sommerfeld’s text, expressing “great interest” in the latter to
Sommerfeld, along with his approval of the fundamental significance accorded to the
concept of momentum. However, their text did not make the required reading list for
Minkowski’s course in mechanics.60

In 1899, at the request of Sommerfeld, who a year earlier had agreed to edit the
physics volumes of Felix Klein’s ambitious Encyclopedia of the Mathematical Sci-
ences including Applications (hereafter Encyklopädie), Minkowski agreed to cover a
topic in molecular physics he knew little about, but one perfectly suited to his skills

55Minkowski to Hurwitz, 5 January, 1892, Cod. Ms. Math. Arch. 78: 188, Handschriftenabteilung,
Niedersächsische Staats- und Universitätsbibliothek (NSUB). On Minkowski’s report see also Barrow-
Green (1997, 143).

56Minkowski papers, Arc. 4˚ 1712, Jewish National and University Library (JNUL); Minkowski to
Hilbert, 11 March, 1901, Minkowski (1973, 139).

57Vorlesungen über analytische Mechanik, Wintersemester 1897/98, p. 29, Minkowski papers,
Arc. 4˚ 1712, JNUL.

58Loc. cit. note 57. The concepts of scalar and vector mentioned by Minkowski were those intro-
duced by W. R. Hamilton (1805–1865), the founder of quaternion theory. Even in Britain, vectors
were judged superior to quaternions for use in physics, giving rise to spirited exchanges in the pages of
Nature during the 1890s, as noted by Bork (1966) and Crowe (1967, chap. 6). On the introduction of
vector analysis as a standard tool of the physicist during this period, see Jungnickel and McCormmach
(1986, 2:342), and for a general history, see Crowe (1967).

59Klein and Sommerfeld (1897–1910); Vorlesungen über Mechanik, Wintersemester 1898/99, 47,
59, Minkowski papers, Arc. 4˚ 1712, JNUL. Minkowski referred to Klein and Sommerfeld’s text in
relation to the concept of force and its anthropomorphic origins, the kinetic theory of gas, and the
theory of elasticity.

60Minkowski to Sommerfeld, 30 October, 1898, MSS 1013A, Special Collections, National Museum
of American History. An extensive reading list of mechanics texts is found in Minkowski’s course notes
for the 1903–1904 winter semester, Mechanik I, 9, Minkowski papers, Arc. 4˚ 1712, JNUL.
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as an analyst: capillarity.61 The article that appeared seven years later represented his
second contribution to physics, after a short note on theoretical hydrodynamics pub-
lished in 1888, but which, ten years later, Minkowski claimed no one had read–save
the abstracter.62

When Minkowski accepted Göttingen’s newly-created third chair of pure mathe-
matics in the fall of 1902, the pace of his research changed brusquely. The University
of Göttingen at the turn of the last century was a magnet for talented young mathe-
maticians and physicists.63 Minkowski soon was immersed in the activities of Göt-
tingen’s Royal Society of Science, its mathematical society, and research seminars.
Several faculty members, including Max Abraham, Gustav Herglotz, Eduard Riecke,
Karl Schwarzschild, and Emil Wiechert, actively pursued theoretical or experimental
investigations motivated by the theory of electrons, and it was not long before Min-
kowski, too, took up the theory. During the summer semester of 1905 he co-led a
seminar with Hilbert on electron theory, featuring reports by Wiechert and Herglotz,
and by Max Laue, who had just finished a doctoral thesis under Max Planck’s super-
vision.64

Along with seminars on advanced topics in physics and analytical mechanics,
Göttingen featured a lively mathematical society, with weekly meetings devoted to
presentations of work-in-progress and reports on scientific activity outside of Göttin-
gen. The electron theory was a frequent topic of discussion in this venue. For in-
stance, the problem of gravitational attraction was first addressed by Schwarzschild in
December, 1904, in a report on Alexander Wilkens’ recent paper on the compatibility
of Lorentz’s electron theory with astronomical observations.65

A focal point of sorts for the mathematical society, Poincaré’s scientific output
fascinated Göttingen scientists in general, and Minkowski in particular, as mentioned
above.66 Minkowski reported to the mathematical society on Poincaré’s publications
on topology, automorphic functions, and capillarity, devoting three talks in 1905–1906
to Poincaré’s 1888–1889 Sorbonne lectures on this subject (Poincaré, 1895). Others
reporting on Poincaré’s work were Conrad Müller on Poincaré’s St. Louis lecture on
the current state and future of mathematical physics (31 January, 1905), Hugo Broggi
on probability (27 October, 1905), Ernst Zermelo on a boundary-value problem (12
December, 1905), Erhard Schmidt on the theory of differential equations (19 Decem-
ber, 1905), Max Abraham on the Sorbonne lectures (6 February, 1906) and Paul Koebe
on the uniformization theorem (19 November, 1907). One gathers from this list that

61Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60; Minkowski to Sommerfeld, 18
November, 1899, Nachlass Sommerfeld, Arch HS1977-28/A, 233, Deutsches Museum München; re-
search notebook, 12 December, 1899, Arc. 4˚ 1712, Minkowski papers, JNUL.

62Minkowski (1888, 1907); Minkowski to Sommerfeld, 30 October, 1898, loc. cit. note 60.
63On Göttingen’s rise to preeminence in these fields, see Manegold (1970), Pyenson (1985, chap. 7),

and Rowe (1989, 1992).
64Nachlass Hilbert 570/9, Handschriftenabteilung, NSUB; Pyenson (1985, chap. 5).
65Jahresbericht der deutschen Mathematiker-Vereinigung 14, 61.
66Although Poincaré spoke on celestial mechanics in Göttingen in 1895 (Rowe, 1992, 475), and was

invited back in 1902, he did not return until 1909, a few months after Minkowski’s sudden death. See
Hilbert to Poincaré, 6 November, 1908 (Dugac, 1986, 209); Klein to Poincaré, 14 Jan., 1902 (Dugac,
1989, 124–125). Sponsored by the Wolfskehl Fund, Poincaré’s 1909 lecture series took place during
“Poincaré week”, in the month of April. His lectures were published the following year (Poincaré,
1910) in a collection launched in 1907, based on an idea of Minkowski’s (Klein, 1907, IV).
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the Göttingen mathematical society paid attention to Poincaré’s contributions to celes-
tial mechanics, mathematical physics, and pure mathematics, all subjects intersecting
with the ongoing research of its members. It also appears that no other member of the
mathematical society was quite as assiduous in this respect as Minkowski.67

When Einstein’s relativity paper appeared in late September, 1905, it drew the
attention of the Bonn experimentalist Walter Kaufmann, a former Göttingen Privat-
dozent and friend of Max Abraham, but neither Abraham nor any of his colleagues
rushed to report on the new ideas to the mathematical society.68 Poincaré’s long
memoir on the dynamics of the electron, published in January, 1906, fared better, al-
though nearly two years went by before Minkowski found an occasion to comment on
Poincaré’s gravitation theory, and to present his own related work-in-progress. Min-
kowski’s typescript has been conserved, and is the source referred to here.69

On the occasion of the 5 November, 1907, meeting of the mathematical society,
Minkowski began his review of Poincaré’s work by observing that gravitation re-
mained an “important question” in relativity theory, since it was not yet known “how
the law of gravitation is arranged for in the realm of the principle of relativity.”70 The
basic problem of gravitation and relativity, in other words, had not been solved by
Poincaré. Eliding mention of Poincaré’s two laws, Minkowski recognized in his work
only one positive result: by considering gravitational attraction as a “pure mathemat-
ical problem,” he said, Poincaré had found gravitation to propagate with the speed of
light, thereby overturning the standard Laplacian argument to the contrary.71

Minkowski expressed dissatisfaction with Poincaré’s approach, allowing that Poincaré’s
was “only one of many” possible laws, a fact stemming from its construction out of
Lorentz-invariants. Consequently, Poincaré’s investigation “had by no means a defini-
tive character.”72 A critical remark of this sort often introduces an alternative theory,
but in this instance none was forthcoming, and as I will show in what follows, there
is ample reason to doubt that Minkowski was actually in a position to improve on
Poincaré’s investigation. Nonetheless, at the end of his talk Minkowski set forth the
possibility of elaborating his report.

Minkowski’s lecture was not devoted entirely to Poincaré’s investigation of Lor-
entz-invariant gravitation. The purpose of his lecture, according to the published ab-
stract, was to present a new form of the equations of electrodynamics leading to a
mathematical redescription of physical laws in four areas: electricity, matter, mechan-

67Jahresbericht der deutschen Mathematiker-Vereinigung 14:128, 586; 15:154–155; 17:5.
68On Kaufmann’s cathode-ray deflection experiments, see Miller (1981, 226) and Hon (1995). Read-

ings of Kaufmann’s articles are discussed at length by Richard Staley (1998, 270).
69Undated typescript of a lecture on a new form of the equations of electrodynamics, Math. Archiv

60:3, Handschriftenabteilung, NSUB. This typescript differs significantly from the posthumously-
published version (1915).

70“Es entsteht die grosse Frage, wie sich denn das Gravitationsgesetz in das Reich des Relativitäts-
prinzipes einordnen lässt” (p. 15).

71Actually, Poincaré postulated the lightlike propagation velocity of gravitation, as mentioned
above (p. 11).

72“Poincaré weist ein solches Gesetz auf, indem er auf die Betrachtung von Invarianten der Lorentz-
schen Gruppe eingeht, doch ist das Gesetz nur eines unter vielen möglichen, und die betreffenden
Untersuchungen tragen in keiner Weise einen definitiven Charakter” (p. 16). See also Pyenson (1973,
233).
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ics, and gravitation.73 These laws were to be expressed in terms of the differential
equations used by Lorentz as the foundation of his successful theory of electrons
(1904a), but in a form taking greater advantage of the invariance of the quadratic
form x2 C y2 C z2 � c2t2. Physical laws, Minkowski stated, were to be expressed
with respect to a four-dimensional manifold, with coordinates x1, x2, x3, x4, where
units were chosen such that c D 1, the ordinary Cartesian coordinates x, y, and z,
went over into the first three, and the fourth was defined to be an imaginary time
coordinate, x4 D i t . Implicitly, then, Minkowski took as his starting point the four-
dimensional vector space described in the last section of Poincaré’s memoir on the
dynamics of the electron.

Minkowski acknowledged, albeit obliquely, a certain continuity between Poincaré’s
memoir and his own program to reform the laws of physics in four-dimensional terms.
By formulating the electromagnetic field equations in four-dimensional notation, Min-
kowski said he was revealing a symmetry not realized by his predecessors, not even
by Poincaré himself (Walter, 1999b, 98). While Poincaré had not sought to modify
the standard form of Maxwell’s equations, Minkowski felt it was time for a change.
The advantage of expressing Maxwell’s equations in the new notation, Minkowski
informed his Göttingen colleagues, was that they were then “easier to grasp” (p. 11).

His reformulation naturally began in the electromagnetic domain, with an expres-
sion for the potentials. He formed a 4-vector potential denoted ( ) by taking the
ordinary vector potential over for the first three components, and setting the fourth
component equal to the product of i and the scalar potential. The same method was
applied to obtain a four-component quantity for current density: for the first three com-
ponents, Minkowski took over the convection current density vector, %w, or charge
density times velocity, and defined the fourth component to be the product of i and
the charge density. Rewriting the potential and current density vectors in this way,
Minkowski imposed what is now known as the Lorentz condition, Div. / D 0, where
Div is an extension of ordinary divergence. This led him to the following expression,
summarizing two of the four Maxwell equations:

� j D �%j .j D 1; 2; 3; 4/; (11)

where � is the d’Alembertian, employed earlier by Poincaré (cf. note 20).
Of the formal innovations presented by Minkowski to the mathematical society,

the most remarkable was what he called a Traktor, a six-component entity used to
represent the electromagnetic field.74 He defined the six components via the 4-vector
potential, using a two-index notation:  jk D @ k=@ j � @ j=@ k , noting the anti-
symmetry relation %kj D �%jk , and zeros along the diagonal jj D 0. In this way, the
Traktor components  14,  24,  34,  23,  31,  12 match up with the field quantities
�iEx , �iEy , �iEz, hx , hy , hz.75

73Jahresbericht der deutschen Mathematiker-Vereinigung 17 (1908), Mitt. u. Nachr., 4–5.
74The same term was employed by Cayley to denote a line which meets any given lines, in a paper

of 1869.
75When written out in full, one obtains, for example,  23 D @ 3=@x2 �@ 2=@x2 D hx . Minkowski

later renamed the Traktor a Raum-Zeit-Vektor II. Art (1908, §5), but it is better known as either a 6-
vector, an antisymmetric 6-tensor, or an antisymmetric, second-rank tensor. As the suite of synonyms
suggests, this object found frequent service in covariant formulations of electrodynamics.
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The Traktor first found application when Minkowski turned to his second topic:
the four-dimensional view of matter. Ignoring the electron theories of matter of Lorentz
and Joseph Larmor, Minkowski focused uniquely on the macroscopic electrodynamics
of moving media.76 For this subject he introduced a “Polarisationstraktor”, .p/, along
with a 4-current-density, .�/, defined by the current density vector i and the charge
density %: .�/ D ix; iy; iz; i% (p. 9). Recalling (11), Minkowski wrote Maxwell’s
source equations in covariant form:

@p1j

@x1

C
@p2j

@x2

C
@p3j

@x3

C
@p4j

@x4

D �j C � j : (12)

Minkowski’s relativistic extension of Maxwell’s theory was all the simpler in that
it elided the covariant expression of the constitutive equations, which involves 4-
velocity.77 While none of his formulas invoked 4-velocity, Minkowski acknowledged
that his theory required a “velocity vector of matter .w/ D w1; w2; w3; w4” (p. 10).

In order to express the “visible velocity of matter in any location,” Minkowski
needed a new vector as a function of the coordinates x, y, z, t (p. 7). Had he un-
derstood Poincaré’s 4-velocity definition (see above, p. 10), he undoubtedly would
have employed it at this point. Instead, following the same method of generalization
from three to four components successfully applied in the case of 4-vector potential,
4-current density, and 4-force density, Minkowski took over the components of the
velocity vector w for the spatial elements of the quadruplet designated w1, w2, w3,
w4:

wx; wy; wz; i
p

1 � w2: (13)

There are two curious aspects to Minkowski’s definition. First of all, its squared
magnitude does not vanish when ordinary velocity vanishes; even a particle at rest
with respect to a reference frame is described in that frame by a 4-velocity vector of
nonzero length. This is also true of Poincaré’s 4-velocity definition, and is a feature of
relativistic kinematics. Secondly, the components of Minkowski’s quadruplet do not
transform like the coordinates x1, x2, x3, x4, and consequently lack what he knew to
be an essential property of a 4-vector.78

The most likely source for Minkowski’s blunder is Poincaré’s paper. We recall that
Poincaré’s derivation of his kinematic invariants ignored 4-vectors (see above, p. 9),
and what is more, his paper features a misleading misprint, according to which the
spatial part of a 4-velocity vector is given to be the ordinary velocity vector.79 Other
sources of error can easily be imagined, of course.80 It is strange that Minkowski

76For a comparison of the Lorentz and Larmor theories, see Darrigol (1994).
77On the four-dimensional transcription of Ohm’s law see Arzeliès and Henry (1959, 65–67).
78Minkowski mentions this very property on p. 6.
79The passage in question may be translated as follows: “Next we consider X , Y , Z, T

p
�1, as

the coordinates of a fourth point Q; the invariants will then be functions of the mutual distances of the
five points O , P , P 0, P 00, Q, and among these functions we must retain only those that are 0th degree
homogeneous with respect, on one hand, to X , Y , Z, T , ıx, ıy, ız, ıt (variables that can be further
replaced by X1, Y1, Z1, T1, � , �, �, 1), and on the other hand, with respect to ı1x, ı1y, ı1z, 1 (variables
that can be further replaced by �1, �1, �1, 1)” (Poincaré, 1906, 170). The misprint is in the next-to-last
set of variables, where instead of 1 we should have ı1t .

80One other obvious source for Minkowski’s error is Lorentz’s transformation of charge density:
%0 D %=ˇl3, where 1=ˇ D

p
1 � v2=c2, and l is a constant later set to unity (Lorentz, 1904a, 813),

although this formula was carefully corrected by Poincaré.



24 THE 4D MOVEMENT IN GRAVITATION

did not check the transformation properties of his 4-velocity definition, but given its
provenance, he probably had no reason to doubt its soundness.

Minkowski’s mistake strongly suggests that at the time of his lecture, he did not
yet conceive of particle motion in terms of a worldline parameter. Such an approach to
particle motion would undoubtedly have spared Minkowski the error, since it renders
trivial the definition of 4-velocity.81 As matters stood in November, 1907, however,
Minkowski could proceed no further with his project of reformulation.82 The devel-
opment of four-dimensional mechanics was hobbled by Minkowski’s spare stock of
4-vectors even more than that of electrodynamics. Although Minkowski defined a
force-density 4-vector, the fourth component of which he correctly identified as the
energy equation, he did not go on to define 4-force at a point.83 Once again, the defi-
nition of a force 4-vector at a point would have been trivial, had Minkowski possessed
a correct 4-velocity definition. No more than a review of Planck’s recent investiga-
tion (1907), Minkowski’s discussion of mechanics involved no 4-vectors at all. Like-
wise for the subsequent section on gravitation, which reviewed Poincaré’s theory, as
shown above (p. 21). Without a valid 4-vector for velocity, Minkowski’s electrody-
namics of moving media was severely hobbled; without a point force 4-vector, his
four-dimensional mechanics and theory of gravitation could go nowhere.

The difficulty encountered by Minkowski in formulating a four-dimensional ap-
proach to physics is surprising in light of the account he gave later of the background
to his discovery of spacetime (1909). Minkowski presented his spacetime view of rel-
ativity theory as a simple application of group methods to the differential equations
of classical mechanics. These equations were known to be invariant with respect to
uniform translations, just as the squared sum of differentials dx2 C dy2 C dz2 was
known to be invariant with respect to rotations and translations of Cartesian axes in
Euclidean 3-space, and yet no one, he said, had thought of compounding the two
corresponding transformation groups. When this is done properly (by introducing a
positive parameter c), one ends up with a group Minkowski designated Gc , with re-
spect to which the laws of physics are covariant. (The group Gc is now known as
the Poincaré group.) Presumably, the four-dimensional approach appeared simple to
Minkowski in hindsight, several months after his struggle with 4-velocity.

In summary, while Minkowski formulated the idea of a four-dimensional language
for physics based on the form-invariance of the Maxwell equations under the trans-
formations of the Lorentz group, his development of this program beyond electrody-
namics was hindered by a misunderstanding of the four-dimensional counterpart of an
ordinary velocity vector. This was to be only a temporary obstacle.

81Let the differential parameter d� of a worldline be expressed in Minkowskian coordinates by
d�2 D dx2

1
Cdx2

2
Cdx2

3
Cdx2

4
. The 4-velocity vector U� is naturally defined to be the first derivative

with respect to this parameter, U� D dx�=d� (� D 1, 2, 3, 4).
82The incongruity noted by Pyenson (1985, 84) between Minkowski’s announcement of a four-

dimensional physics on one hand, and on the other hand, a trifle of 4-vector definitions and expres-
sions, is to be understood as a indication of Minkowski’s gradual ascent of the learning curve of four-
dimensional physics.

83Minkowski defined the spatial components of the empty space force density 4-vector Xj in terms of
the ordinary force density components X, Y, Z, and their product with velocity: A D Xwx ;Ywy ;Zwz ,
such that Xj D X;Y;Z; iA. He also expressed the force density 4-vector as the product of 4-current-
density and the Traktor: Xj D %1 j1 C %2 j2 C %3 j3 C %4 j4.
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On 21 December, 1907, Minkowski presented to the Royal Society of Science in
Göttingen a memoir entitled “The Basic Equations for Electromagnetic Processes in
Moving Bodies,” which I will refer to for brevity as the Grundgleichungen.84 Min-
kowski’s memoir revisits in detail most of the topics introduced in his 5 November
lecture to the mathematical society, but employs none of the jargon of spaces, geome-
tries, and manifolds. What it emphasizes instead–in agreement with its title–is the
achievement of the first theory of electrodynamics of moving bodies in full confor-
mance to the principle of relativity. Also underlined is a second result described as
“very surprising”: the laws of mechanics follow from the postulate of relativity and
the law of energy conservation alone. On the four-dimensional world and the new
form of the equations of electrodynamics, both topics headlined in his November lec-
ture, Minkowski remained coy. Curiously, the introduction mentions nothing about
a new formalism, even though all but one of fourteen sections introduce and employ
new notation or calculation rules (not counting the appendix).

The added emphasis on the laws of mechanics in Minkowski’s introduction, on the
other hand, reflects Minkowski’s recent discovery of correct definitions of 4-velocity
and 4-force, along with geometric interpretations of these entities. It was in the Grund-
gleichungen that Minkowski first employed the term “spacetime” (Raumzeit).85 For
example, he introduced 4-current density as the exemplar of a “spacetime vector of
the first kind” (§5), and used it to derive a velocity 4-vector. Identifying %1, %2, %3, %4

with %wx , %wy , %wz, i%, just as he had done in his lecture of 5 November, Minkowski
wrote the transformation to a primed system moving with uniform velocity q < 1:

%0
D %

�
�qwz C 1
p

1 � q2

�
; %0w0

z0 D %

�
wz � q

p

1 � q2

�
; %0w0

x0 D %wx; %
0w0

y0 D %wy : (14)

Observing that this transformation did not alter the expression %2.1 � w2/, Min-
kowski announced an “important remark” concerning the relation of the primed to the
unprimed velocity vector (§4). Dividing the 4-current density by the positive square
root of the latter invariant, he obtained a valid definition of 4-velocity,

wx
p

1 � w2
;

wy
p

1 � w2
;

wz
p

1 � w2
;

i
p

1 � w2
; (15)

the squared magnitude of which is equal to �1. Minkowski seemed satisfied with this
definition, naming it the spacetime velocity vector (Raum-Zeit-Vektor Geschwindigkeit).

The significance of the spacetime velocity vector, Minkowski observed, lies in
the relation it establishes between the coordinate differentials and matter in motion,

84Minkowski’s manuscript was delivered to the printer on 21 February, 1908, corrected, and pub-
lished on 5 April, 1908 (Journal für die “Nachrichten” der Gesellschaft der Wissenschaften zu Göt-
tingen, mathematische-naturwissenschaftliche Klasse 1894–1912, Scient. 66, Nr. 1, 471, Archiv der
Akademie der Wissenschaften zu Göttingen). I thank Tilman Sauer for pointing out this source to me.

85While the published version of Minkowski’s 5 November lecture refers on one occasion to a
“Raumzeitpunkt” (Minkowski, 1915, 934), the term occurs nowhere in the archival typescript. The
source of this addition is unknown. A manuscript annotation of the first page of the typescript bears
Sommerfeld’s initials, and indicates that he compared parts of the typescript to the proofs, as Lewis
Pyenson correctly points out (1985, 82). Pyenson errs, however, in attributing to Sommerfeld the au-
thorship of the remaining annotations, which were all penned in Minkowski’s characteristic cramped
hand.
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according to the expressionp
�.dx2

1 C dx2
2 C dx2

3 C dx2
4/ D dt

p
1 � w2: (16)

The Lorentz-invariance of the right-hand side of (16), signaled earlier by both Poincaré
and Planck, now described the relation of the sum of the squares of the coordinate
differentials to the components of 4-velocity.

The latter relation plays no direct role in Minkowski’s subsequent development of
the electrodynamics of moving media, and in this it is unlike the 4-velocity definition.
Rewriting the right-hand side of (16) as the ratio of the coordinate differential dx4 to
the temporal component of 4-velocity, w4, Minkowski defined the spacetime integral
of (16) as the “proper time” (Eigenzeit) pertaining to a particle of matter. The intro-
duction of proper time streamlined Minkowski’s 4-vector expressions, for instance,
4-velocity was now expressed in terms of the coordinate differentials, the imaginary
unit, and the differential of proper time, d� :

dx

d�
;

dy

d�
;

dz

d�
; i

dt

d�
: (17)

Along with the notational simplification realized by the introduction of proper time,
Minkowski signaled a geometric interpretation of 4-velocity. Since proper time is the
parameter of a spacetime line (or as he later called it, a worldline), it follows that
4-velocity is equal to the slope of a worldline at a given spacetime point, much like
ordinary three-velocity is described by the slope of a displacement curve in classical
kinematics. What Minkowski pointed out, in other words, is that 4-velocity is tangent
to a worldline at a given spacetime point (p. 108).

In order to develop his mechanics, Minkowski needed a workable definition of
mass. He adapted Einstein’s and Planck’s notion of rest mass to the arena of space-
time by considering that a particle of matter sweeps out a hypertube in spacetime.
Conservation of particle mass m was then expressed as invariance of the product of
rest mass density with the volume slices of successive constant-time hypersurfaces
over the length of the particle’s worldline, such that dm=d� D 0. Minkowski did not
consider the case of variable rest mass density, which arises, for instance, in the case
of heat exchange.

Minkowski’s decision to adopt a constant rest mass density is linked to his view of
the electrodynamics of moving media. Recall that he had introduced a six-vector in
his 5 November lecture to represent the field. The product of the field and excitation
six-vectors, he noted, leads to an interesting 4 by 4 matrix, combining the Maxwell
stresses, Poynting vector, and electromagnetic energy density. He did not assign a
name to this object, known later as the energy-momentum tensor, and often viewed as
one of Minkowski’s greatest achievements in electrodynamics.86 Of special interest
to Minkowski was the fact that the 4-divergence of this matrix, denoted lor S , is a

86While Minkowski’s tensor is traceless, it is also asymmetric, a fact which led to criticism and
rejection by leading theorists of the day. His asymmetric tensor was later rehabilitated; for a technical
discussion with reference to the original papers, see Møller (1972, 219). In the absence of matter, his
tensor assumes a symmetric form; in this form, it was hailed by theorists.
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4-vector, K:87

K D lor S: (18)

This 4-divergence (18) was used to define the “ponderomotive” force density, or gen-
eralized force per unit volume, neither mechanical nor non-mechanical in the pure
sense of these terms. The 4-vector K is not normal, in general, to the velocity w of a
given volume element, so to ensure that the ponderomotive force acts orthogonally to
w, Minkowski added a component containing a velocity term:

K C .w NK/w: (19)

The parentheses in (19) indicate a scalar product, and NK stands for the transpose of
K. By defining the ponderomotive force density in this way, Minkowski effectively
opted for an equation of motion in which 4-acceleration is normal to 4-velocity.88 It
appears that Minkowski let this view of force and acceleration guide his development
of spacetime mechanics. In the latter domain, he formed a 4 by 4 matrix S in the
force density and energy of an elastic media with the same transformation properties
as the energy-momentum tensor S of (18), and used the 4-divergence of this tensor to
express the equations of motion of a volume element of constant rest mass density �
(p. 106):

�
dwh

d�
D Kh C �wh .h D 1; 2; 3; 4/: (20)

The factor � was determined by the definition of 4-velocity to be equal to the scalar
product .K Nw/, much like the definition of ponderomotive force (19). In sum, it may
be supposed that the non-orthogonality with respect to a given volume element of
the 4-divergence of Minkowski’s asymmetric energy-momentum tensor for moving
media led Minkowski to introduce a velocity term to his definition of ponderomotive
force. This definition was then ported to spacetime mechanics, where for the sake of
consistency, Minkowski held rest mass density constant in the equations of motion
(20).

Minkowski’s stipulation of constant rest mass density was eventually challenged
by Max Abraham (1909, 739) and others, for reasons that do not concern us here. De-
spite its obvious drawbacks, it greatly simplified the tasks of outlining the mechanics
of spacetime and developing a theory of gravitation. For example, it permitted him to
define the equations of motion of a particle in terms of the product of rest mass and
4-acceleration, where the latter is the derivative of 4-velocity with respect to proper
time. Since 4-velocity is orthogonal to 4-acceleration, for constant proper mass it is
also orthogonal to a 4-vector Minkowski called a “driving force” (bewegende Kraft,
p. 108). Minkowski wrote four equations defining this force:

m
d

d�

dx

d�
D Rx; m

d

d�

dy

d�
D Ry; m

d

d�

dz

d�
D Rz; m

d

d�

dt

d�
D Rt : (21)

87Minkowski defined the energy-momentum tensor S in two ways: as the product of six-vectors,
fF D S � L, where L is the Lagrange density, and in component form via the equations for Maxwell
stresses, the Poynting vector, and electromagnetic energy density (1908, 96).

88Minkowski’s alternative between a 4-force definition and the “natural” spacetime equations of
motion was underlined by Pauli (1921, 664).
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The first three expressions differ from Planck’s equations of motion, in that Planck
defined force as change in momentum, instead of mass times acceleration. It was only
a few months later that Minkowski explicitly defined four-momentum as the product
of 4-velocity with proper mass.89 By dividing Minkowski’s first three equations by
a Lorentz factor, one obtains Planck’s equations. Minkowski’s fourth equation, Rt ,
formally dependent on the other three, expresses the law of energy conservation.90

From energy conservation and the relativity postulate alone, Minkowski concluded,
one may derive the equations of motion. This is the single “surprising” result of his
investigation of relativistic mechanics, referred to at the outset of his paper (see above,
p. 25).

If Minkowski found few surprises in spacetime mechanics, many of his readers
were taken aback by his four-dimensional approach. For example, the first physicists
to comment on his work, Albert Einstein and Jakob Laub, rewrote Minkowski’s ex-
pressions in ordinary vector notation, sparing the reader the “sizable demands” (ziem-
lich große Anforderungen) of Minkowski’s mathematics (1908, 532). They did not
specify the nature of the demands, but the abstracter of their paper pointed to the
“special knowledge of the calculation methods” required for assimilation of Minkow-
ski’s equations.91 In other words, for Minkowski’s readers, his novel matrix calcu-
lus was the principal technical obstacle to overcome. Where Poincaré pushed rejec-

89Planck (1906, eqn. 6), Minkowski (1909, §4). In the latter lecture, Minkowski proposed the mod-
ern definition of kinetic energy as the temporal component of 4-momentum times c2, or mc2dt=d� .
The “spatial” part of the driving force (21) was referred to by Lorentz (1910, 1237) as a “Minkow-
skian force” (Minkowskische Kraft), differing from the Newtonian force by a Lorentz factor. Lorentz
complemented the Minkowskian force with a “Minkowskian mass” (Minkowskische Masse).

90Minkowski’s argument may be summarized as follows. From the definition of a 4-vector, the
following orthogonality relation holds for the driving force R:

Rx

dx

d�
C Ry

dy

d�
C Rz

dz

d�
D Rt

dt

d�
: (22)

Integration of the rest-mass density over the hypersurface normal to the worldline of the mass point
results in the driving force components (21), but if the integration is to be performed instead over a
constant-time hypersurface, proper time is replaced by coordinate time, such that the fourth equation
reads: md=dt.dt=d�/ D Rt d�=dt . From (22) we obtain an expression for Rt , which we multiply by
d�=dt :

m
d

dt

�
dt

d�

�
D wxRx

d�

dt
C wyRy

d�

dt
C wzRz

d�

dt
: (23)

Minkowski reasoned that since the right-hand side of (23) describes the rate at which work is done on
the particle, the left-hand side must be the rate of change of the particle’s kinetic energy, such that (23)
represents the law of energy conservation. He immediately related (23) to the kinetic energy of the
particle:

m

�
dt

d�
� 1

�
D m

�
1

p
1 � w2

� 1

�
D m.1

2
jwj2 C

3
8
jwj4 C � � � /: (24)

Minkowski did not justify the latter expression, but in virtue of his definition of proper time, d� D

dt
p

1 � w2, the left-hand side of (23) may be rewritten as m.d=dt/.1=
p

1 � w2/, such that upon
integration the particle’s kinetic energy is m=

p
1 � w2 C C , where C is a constant. For agreement

with the Newtonian expression of kinetic energy in case of small particle velocities (w � 1), we let
C D �m, which accords both with (24) and the definition of kinetic energy given in a later lecture
(cf. note 89).

91Jahrbuch über die Fortschritte für Mathematik 39, 1908, 910.
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tion of formalism to an extreme, Minkowski pulled in the other direction, introduc-
ing a formalism foreign to the practice of physics. What motivated this brash move
is unclear, and his choice is all the more curious because he knowingly defied the
German trend of vector notation in electrodynamics.92 As mentioned above, Min-
kowski was ill-disposed toward quaternions, although he admitted in print that they
could be brought into use for relativity instead of matrix calculus. He spoke here
from experience, as manuscript notes reveal that he used quaternions (in addition to
Cartesian-coordinate representation and ordinary vector analysis) to investigate the
electrodynamics of moving media.93 In the end, however, he felt that for his purposes
quaternions were “too limited and cumbersome” (zu eng und schwerfällig, p. 79).

As far as notation is concerned, Minkowski’s treatment of differential operations
broke cleanly with then-current practice. It also broke with the precedent of his 5
November lecture, where he had introduced, albeit parsimoniously, both � and Div
(see above, p. 22). For the Grundgleichungen he adopted a different approach, ex-
tending the r to four dimensions, and labeling the resulting operator lor, already
encountered above in (18). The name is short for Lorentz, and the effect is the op-
eration:

ˇ̌
@=@x1; @=@x2; @=@x3; @=@x4

ˇ̌
. When applied to a 6-vector, lor results in

a 4-vector, in what Minkowski described as an appropriate translation of the matrix
product rule (p. 89); it also mimics the effect of the ordinary r. Transforming as a
4-vector, lor is liberally employed in the second part of the Grundgleichungen, to the
exclusion of any and all particular 4-vector functions.94 The use of lor made for a
presentation of electrodynamics elegant in the extreme, at the expense of legibility for
German physicists more used to thinking in terms of gradients, divergences, and curls
(or rotations).

Minkowski’s equations of electrodynamics departed radically in form with those
of the old electrodynamics, shocking the thought patterns of physicists, and creating a
phenomenon of rejection that took several years–and a new formalism–to overcome.95

Why did Minkowski break with this tradition? Did he feel that the new physics of
spacetime required a clean break with nineteenth-century practice? Perhaps, but he
must have recognized that the old methods would prove resistant to change. His own
subsequent practice shows as much: after writing the Grundgleichungen Minkowski
did not bother with lor during his private explorations of the formal side of electrody-
namics, preferring the coordinate method.96

92This trend is described by Darrigol (1993, 270). The sharp contrast between the importance as-
signed to vector methods in France and Germany may be linked to the status accorded to applied
mathematics in these two nations, as discussed by H. Gispert in her review of the French version of
Klein’s Encyklopädie (Gispert, 2001).

93At one point during his calculations Minkowski seemed convinced of the utility of this for-
malism, remarking that electrodynamics is “predestined for application of quaternionic calculations”
(Math. Archiv 60:6, 21, Handschriftenabteilung, NSUB).

94A precedent for Minkowski’s exclusive use of lor may be found in Gibbs and Wilson (1901), where
r is similarly preferred to vector functions.

95Cf. Max von Laue’s remark that physicists understood little of Minkowski’s work because of its
unfamiliar mathematical expression (1951, 515), and Chuang Liu’s account of the difficulty experi-
enced by Max Abraham and Gunnar Nordström in applying Minkowski’s formalism (1991, 66). While
Minkowski’s calculus is a straightforward extension of Cayley’s formalism (for a summary, see Cun-
ningham 1914, chap. 8), the latter formalism was itself unfamiliar to physicists.

96Math. Archiv 60:5, Handschriftenabteilung, NSUB. This 82-page set of notes dates from 23 May
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He also relied largely–but not exclusively–on a Cartesian-coordinate approach dur-
ing his preliminary investigations of the subjects treated in the Grundgleichungen. His
surviving research notes, made up almost entirely of symbolic calculations, shed an in-
teresting light on Minkowski’s path to both a theory of the electrodynamics of moving
media, and a theory of gravitation, or more generally to his process of discovery. No-
tably, where the subjects of mechanics and gravitation are relegated to the appendix of
the Grundgleichungen, these notes show that Minkowski pursued questions of electro-
dynamics and gravitation in parallel, switching from one topic to the other three times
in the course of 163 carefully numbered pages. At least fifteen of these pages are
specifically concerned with gravitation; the notes are undated, but those concerning
gravitation are certainly posterior to the typescript of the 5 November lecture, because
unlike the latter, they feature valid definitions of 4-velocity and 4-force.

Minkowski’s attempt to capture gravitational action in terms of a 4-scalar potential
is of particular interest. We recall that Minkowski had expressed Maxwell’s equations
in terms of a 4-vector potential (11) during his lecture of 5 November, and on this
basis, it was natural for him to investigate the possibility of representing gravitational
force on a point mass in a fashion analogous to that of the force on a point charge
moving in an electromagnetic field. In his scratch notes, Minkowski defined a 4-scalar
potential ˆ, in terms of which he initially devised the law of motion:

d
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�x0
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�
@ˆ

@z
D 0;

(25)

where constants are neglected, � denotes proper time, and primes indicate differenti-
ation with respect to coordinate time t (i.e., x0 D dx=dt ).97 This generalization of
the Newtonian potential to a 4-scalar potential appears to be one of the first paths ex-
plored by Minkowski in his study of gravitation, but his investigation is inconclusive.
In particular, there is no indication in these notes of a recognition on Minkowski’s part
that a four-scalar potential conflicts with the postulates of invariant rest mass and light
velocity.98 Nor is there any evidence that he considered suspending either one of these
postulates.

to 6 October, 1908. A posthumously published paper on the electron-theoretical derivation of the basic
equations of electrodynamics for moving media, while purported to be from Minkowski’s Nachlass,
was written entirely by Max Born, as he acknowledged (Minkowski and Born, 1910, 527). In the latter
publication lor makes only a brief appearance.

97Math. Archiv 60:6, 10, Handschriftenabteilung, NSUB.
98This “peculiar” consequence of Minkowski’s spacetime mechanics was underlined by Maxwell’s

German translator, the Berlin physicist Max B. Weinstein (1914, 42). In Minkowski spacetime, 4-
acceleration is orthogonal to 4-velocity: U�dU�=d� D 0, � D 1, 2, 3, 4, where � is the proper
time. We assume a 4-scalar potential ˆ such that the gravitational 4-force F� D �m@ˆ=@x�. If we
consider a point mass with 4-velocity U� subjected to a 4-force F� derived from this potential, we have
U�F� D �U�m@ˆ=@x�. Writing 4-velocity as dx�=d� , and substituting in the latter expression, we
obtain

U�F� D �m
dx�

d�

@ˆ

@x�

D �m
dˆ

d�
D 0;

and consequently, dˆ=d� D 0, which means that the law of motion describes the trajectory of the
passive mass m only in the trivial case of constant ˆ along its worldline.
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Likewise, in the Grundgleichungen there is no question of adopting either a vari-
able mass density or a gravitational 4-potential. Once he had established the founda-
tions of spacetime mechanics, Minkowski took up the case of gravitational attraction.
The problem choice is significant, in that the same question had been treated at length
by Poincaré (although not to Minkowski’s satisfaction, as mentioned above, p. 21).
Implicitly, Minkowski encouraged readers to compare methods and results. Explic-
itly, proceeding in what he described (in a footnote) as a “wholly different way” from
Poincaré, Minkowski said he wanted to make “plausible” the inclusion of gravitation
in the scheme of relativistic mechanics (p. 109). It will become clear in what fol-
lows that his project was more ambitious than the modest elaboration of a plausibility
argument, as it was designed to validate his spacetime mechanics.

The point of departure for Minkowski’s theory of gravitation was quite different
from that of Poincaré, because the latter’s results were integrated into the former’s for-
malism. For example, where Poincaré initially assumed a finite propagation velocity
of gravitation no greater than that of light, only to opt in the end for a velocity equal
to that of light, Minkowski assumed implicitly from the outset that this velocity was
equal to that of light. Similarly, Poincaré initially supposed the gravitational force
to be Lorentz covariant, only to opt in the end for an analog of the Lorentz force,
where Minkowski required implicitly from the outset that all forces transform like the
Lorentz force.

Combining geometric and symbolic arguments, Minkowski’s exposition of his
theory of gravitation introduces a new geometric object, the three-dimensional “ray
form” (Strahlgebilde) of a given spacetime point, known today as a light hypercone
(or lightcone). For a fixed spacetime point B∗ D .x∗;y∗; z∗; t∗/, the lightcone of B∗

is defined by the sets of spacetime points B D .x;y; z; t/ satisfying the equation

.x � x∗/2 C .y � y∗/2 C .z � z∗/2 D .t � t∗/2; t � t∗ = 0: (26)

For all the spacetime points B of this lightcone, B∗ is what Minkowski called B’s
lightpoint. Any worldline intersects the lightcone in one spacetime point only, Min-
kowski observed, such that for any spacetime point B on a worldline there exists one
and only one lightpoint B∗. Minkowski remarked in a later lecture that the lightcone
divides four-dimensional space into three regions: timelike, spacelike and lightlike.99

Using this novel insight to the structure of four-dimensional space, in combina-
tion with the 4-vector notation set up in earlier in his memoir, Minkowski presented
and applied his law of gravitational attraction in two highly condensed pages. Min-
kowski’s geometric argument employs non-Euclidean relations that were unfamiliar to
physicists, yet he provided no diagrams. Visually-intuitive arguments had fallen into
disfavor with mathematicians by this time, with the rise of the axiomatic approach to
geometry favored by David Hilbert (Rowe, 1997), yet Minkowski never renounced the
use of figures in geometry; he employed them in earlier works on number geometry,
and went on to publish spacetime diagrams in the sequel to the Grundgleichungen.100

99Minkowski introduced the terms zeitartig and raumartig in (1909).
100There is little agreement on where to situate Minkowski’s work on relativity along a line running

from the intuitive to the formal. Peter Galison (1979, 89), for example, underlines Minkowski’s visual
thinking (i.e., reasoning that appeals to figures or diagrams), while Leo Corry (1997, 275; 2004, chap. 4)
considers Minkowski’s work in the context of Hilbert’s axiomatic program for physics.
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Figure 1: Minkowski’s geometry of gravitation, with source in arbitrary motion.

For the purposes of my reconstruction, I refer to a spacetime diagram (Figure 1) of the
sort Minkowski employed in the sequel (reproduced in Figure 3).101

On the assumption that the force of gravitation is a 4-vector normal to the 4-
velocity of the passive mass m, Minkowski derived his law of attraction in the follow-
ing way. The trajectories of two particles of mass m and m∗ correspond to two space-
time filaments F and F∗, respectively. Minkowski’s arguments refer to worldlines he
called central lines (Hauptlinien) of these filaments, which pass through points on the
successive constant-time hypersurfaces delimited by the respective particle volumes.
The central lines of the filaments F and F∗ are shown in Figure 1. An infinitesimal
element of the central line of F is labeled BC , and the two lightpoints corresponding
to the endpoints B and C are labeled B∗ and C ∗ on the central line of F∗. From
the origin of the rest frame O , a 4-vector parallel to B∗C ∗ intersects at A0 the three-
dimensional hypersurface defined by the equation �x2 � y2 � z2 C t2 D 1. Finally, a
spacelike 4-vector BD∗ extends from B to a point D∗ on the worldline tangent to the
central line of F∗ at B∗.

Referring to the latter configuration of seven spacetime points, two central lines, a
lightcone and a calibration hypersurface, Minkowski expressed the spatial components
of the driving force of gravitation exerted by m∗ on m at B,

mm∗

�
OA0

B∗D∗

�3

BD∗: (27)

Minkowski’s gravitational driving force is composed of the latter 4-vector (27) and a
second 4-vector parallel to B∗C ∗ at B, such that the driving force is always orthog-
onal to the 4-velocity of the passive mass m at B. (For reasons of commodity, I will
refer to this law of force as Minkowski’s first law.)

101Two spatial dimensions are suppressed in Figure 1, and lightcones are represented by broken lines
with slope equal to ˙1, the units being chosen so that the propagation velocity of light is unity (c D 1).
In this model of Minkowski space, orthogonal coordinate axes appear oblique in general, for example,
the spatial axes x∗y∗z∗ are orthogonal to the tangent B∗C ∗ at spacetime point B∗ of the central line
of the filament F∗ described by a particle of proper mass m∗.
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Figure 2: Minkowski’s geometry of gravitation, with source in uniform motion.

The form of Minkowski’s first law of gravitation is comparable to that of his pon-
deromotive force for moving media (19), in that the driving force has two components,
only one of which depends on the motion of the test particle. In the gravitational case,
however, Minkowski did not write out the 4-vector components in terms of matrix
products. Instead, he relied on spacetime geometry and the definition of a 4-vector.
The only way physicists could understand (27) was by reformulating it in terms of
ordinary vectors referring to a conveniently chosen inertial frame, and even then, they
could not rely on Minkowski’s description alone, as it is incomplete.102

102The 4-vector OA0 in (27) has unit magnitude by definition in all inertial frames, while B∗D∗ is a
timelike 4-vector tangent to the central line of F∗ at B∗. Consequently, B∗D∗ may be taken to coin-
cide with the temporal axis of a frame instantaneously at rest with m∗ at B∗, such that it has only one
nonzero component: the difference in proper time between the points B∗ and D∗. It is assumed that
the rest frame may be determined unambiguously for a particle in arbitrary motion, as asserted with-
out proof by Minkowski in a later lecture (1909, § III); subsequently, Max Born (1909, 26) remarked
that any motion may be approximated by what he called hyperbolic motion, and noted that such mo-
tion is characterized by an acceleration of constant magnitude (as measured in an inertial frame). If
we locate the origin of this frame at B∗, and let D∗ D .0; 0; 0; t/, then B∗D∗ D .0; 0; 0; i t/, and
.B∗D∗/3 D �i t3. Likewise in this same frame, A D A0 D .0; 0; 0; 1/, and OA0 D OA D .0; 0; 0; i/.
Minkowski understood the term .OA0=B∗D∗/ as the ratio (Verhältnis) of two parallel 4-vectors, an
operation familiar from the calculus of quaternions, but one not defined for 4-vectors. While modern
vector systems ignore vector division, in Hamilton’s quaternionic calculus the quotient of vectors is
unambiguously defined; see, for example, Tait (1882–1884, chap. 2). Accordingly, the quotient in (27)
is the ratio of lengths, .OA0=B∗D∗/ D 1=t , and the cubed ratio is t�3. The point B lies on the same
constant-time hypersurface as D∗, so we assign it the value .x;y; z; t/ D .r; t/. This assignment deter-
mines the value of the 4-vector BD∗: B∗D∗ D .�x;�y;�z; 0/ D .�r; 0/. Since B∗ is a lightpoint of
B, we can apply (26) to obtain x2 Cy2 Cz2 D t2 D r2, and consequently, t3 D r3. Substituting for t3

results in .OA0=B∗D∗/3 D 1=t3 D 1=r3. The 4-vector B∗D∗ is spacelike, such that its projection on
the constant-time hypersurface orthogonal to B∗D∗ at D∗ is the ordinary vector .�x;�y;�z/ D �r.
In terms of ordinary vectors and scalars measured in the rest frame of m∗, Minkowski’s expression (27)
is equivalent to Newton’s law (neglecting the gravitational constant):

�mm∗
r
r3

(28)

Neither (27) nor (28) contains any velocity-dependent terms, while the timelike component of Min-
kowski’s first law depends on the velocity of the passive mass. Newton’s law (28) thus coincides with
Minkowski’s first law only in the case of relative rest.
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Even without spacetime diagrams or a transcription into ordinary vector notation,
the formal analogy of (27) to Newton’s law is readily apparent, and this is probably
why Minkowski wrote it this way. In doing so, however, he passed up an opportunity
to employ the new matrix machinery at his disposal. Had he seized this opportunity,
he would have gained a simple, self-contained, coordinate-free expression of the law
of gravitation, and provided readers with a more elaborate example of his calculus in
action, but the latter desiderata must not have been among his primary objectives.103

Minkowski was not yet finished with his law of gravitation. Unlike Poincaré,
after writing his law of gravitation, Minkowski went on to apply it to the particular
case of uniform rectilinear motion of the source m∗. He considered the latter in a
comoving frame, in which the temporal axis is chosen to coincide with the tangent
to the central line of F∗ at B∗ (cf. the situation described in note 102). Referring to
the reconstructed spacetime diagram in Figure 2, the temporal axis is represented by a
vertical line F∗, such that the origin is established in a frame comoving with m∗. To
the retarded position of m∗, denoted B∗, Minkowski assigned the coordinates (0, 0,
0, �∗), and to the position B of the passive mass m he assigned the coordinates (x, y,
z, t/. The geometry of this configuration fixes the location of D∗ at (0, 0, 0, t ), from
which the 4-vectors BD∗ D .�x, �y, �z, 0/ and B∗D∗ D .0; 0; 0; i.t � �∗// are
determined. In this case, Minkowski pointed out, (26) reduces to:

x2
C y2

C z2
D .t � �∗/2: (29)

Substituting the above values of BD∗ and B∗D∗ into Minkowski’s formula (27), the
spatial components of the 4-acceleration of the passive mass m at B due to the active
mass m∗ at B∗ turn out to be:104

d2x

d�2
D �

m∗x

.t � �∗/3
;

d2y

d�2
D �

m∗y

.t � �∗/3
;

d2z

d�2
D �

m∗z

.t � �∗/3
: (30)

From (30) and (29), the corresponding temporal component at B may be determined:105

d2t

d�2
D �

m∗

.t � �∗/2
d.t � �∗/

dt
: (33)

103Minkowski’s driving force may be expressed in his notation as a function of scalar products of
4-velocities and 4-position:

�mm∗
.w Nw∗/R � .w NR/w∗

.R Nw∗/3.w Nw∗/
:

Here I letw andw∗ designate 4-velocity at the passive and active mass points, while R is the associated
4-position, the parentheses denote a scalar product, and the bar indicates transposition.

104The intermediate calculations can be reconstructed as follows. Let the driving force be designated
F�, � D 1; 2; 3; 4. Since .OA0=B∗D∗/3 D t�3, and BD∗ D .�x, �y, �z, 0/, equations (21)
and (27) yield: F1=m D d2x=d�2 D �m∗x=.t � �∗/3, F2=m D d2y=d�2 D �m∗y=.t � �∗/3,
F3=m D d2z=d�2 D �m∗z=.t � �∗/3.

105Minkowski omitted the intermediate calculations, which may be reconstructed in modern
notation as follows. Let the 4-velocity of the passive mass point be designated U� D

.dx=d�; dy=d�; dz=d�; idt=d�/, while the first three components of its 4-acceleration, designated
A�, at B due to the source m∗ are given by (30). From the orthogonality of 4-velocity and 4-
acceleration we have:

U�A� D �
dx

d�

m∗x

.t � �∗/3
�

dy

d�

m∗y

.t � �∗/3
�

dz

d�

m∗z

.t � �∗/3
�

idt

d�

id2t

d�2
D 0: (31)
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Inspecting (30), it appears that the only difference between these acceleration compo-
nents and those corresponding to Newtonian attraction is a replacement in the latter of
coordinate time t by proper time � .106

The formal similarity of (30) to the Newtonian law of motion under a central force
probably suggested to Minkowski that his law induces Keplerian trajectories. With
the knowledge gained from (30), to the effect that the only difference between clas-
sical and relativistic trajectories is that arising from the substitution of proper time
for coordinate time, Minkowski demonstrated the compatibility of his relativistic law
of gravitation with observation using only Kepler’s equation and the definition of 4-
velocity.

Writing Kepler’s equation in terms of proper time yields:

n� D E � e sin E; (34)

where n� denotes the mean anomaly, e the eccentricity, and E the eccentric anomaly.
Minkowski referred to (34) and to the norm of a 4-velocity vector:�

dx

d�

�2

C

�
dy

d�

�2

C

�
dz

d�

�2

D

�
dt

d�

�2

� 1; (35)

in order to determine the difference between the mean anomaly in coordinate time nt

and the mean anomaly in proper time n� . From (35), Minkowski deduced:107

�
dt

d�

�2

� 1 D
m∗

ac2

1 C e cos E

1 � e cos E
: (37)

Rearranging (31) results in an expression for the temporal component of 4-acceleration:

d2t

d�2
D �

m∗

.t � �∗/3

�
xdx

dt
C

ydy

dt
C

zdz

dt

�
: (32)

Differentiating (29) with respect to dt results in xdx=dt Cydy=dt C zdz=dt D .t � �∗/d.t � �∗/=dt ,
the right-hand side of which we substitute in (32) to obtain (33).

106A young Polish physicist in Göttingen, Felix Joachim de Wisniewski later studied this case, but
with equations differing from (30) by a Lorentz factor (1913a, 388). In a postscript to the second
installment of his paper (1913b, 676), he employed Minkowski’s matrix notation, becoming, with Max
Born, one of the rare physicists to adopt this notation.

107The intermediate calculations were omitted by Minkowski, but figure among his research notes
(Math. Archiv 60:6, 126–127, Handschriftenabteilung, NSUB). Following the method outlined by Otto
Dziobek (1888, 12), Minkowski began with the energy integral of Keplerian motion:�

dt

dW

�2

� 1 D
2

`2

�
M

R
� C

�
; (36)

where ` denotes the velocity of light, M is the sum of the masses times the gravitational constant,
M D k2.m C m∗/, R is the radius, and C is a constant. The left-hand side of (36) is the same
as the right-hand side of (35) for W D � . In order to express dt=dW (which is to say dt=d� )
in terms of E, Minkowski considered a conic section in polar coordinates, with focus at the origin:
R D a.1 � e2/=.1 C e cos'/ D a.1 � e cos E/, where a denotes the semi-major axis, and ' is the
true anomaly. By eliminating ' in favor of E and e, and differentiating (34), Minkowski obtained an
expression equivalent to (37).
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Solving (37) for the coordinate time dt , expanding to terms in c�2, and multiplying
by n led Minkowski to the expression:

ndt D nd�

�
1 C

1

2

m∗

ac2

1 C e cos E

1 � e cos E

�
: (38)

Recalling (34), Minkowski managed to express the difference between the mean anom-
aly in coordinate time and proper time:108

nt C const. D

�
1 C

1

2

m∗

ac2

�
n� C

m∗

ac2
e sin E: (39)

Evaluating the relativistic factor m∗=ac2 for solar mass and the Earth’s semi-major
axis to be 10�8, Minkowski found the deviation from Newtonian orbits to be negligible
in the solar system. On this basis, he concluded that

a decision against such a law and the proposed modified mechanics in fa-
vor of the Newtonian law of attraction with Newtonian mechanics would
not be deducible from astronomical observations.109

According to the quoted remark, there was more at stake here for Minkowski than
just the empirical adequacy of his law of gravitational attraction, as his claim is for
parity between Newton’s law and classical mechanics, on one hand, and the system
composed of the law of gravitation and spacetime mechanics on the other hand. This
new system, Minkowski claimed, was verified by astronomical observations at least as
well as the classical system formed by the Newtonian law of attraction and Newtonian
mechanics.

Instead of comparing his law with one or the other of Poincaré’s laws, Minkowski
noted a difference in method, as mentioned above. In light of Minkowski’s emphasis
on the methodological difference with Poincaré, and the hybrid geometric-symbolic
nature of Minkowski’s exposition, it is clear that the point of reexamining the problem
of relativity and gravitation in the Grundgleichungen was not simply to make plausible
the inclusion of gravitation in a relativistic framework. Rather, since gravitational
attraction was the only example Minkowski provided of his formalism in action, his
line of argument served to validate his four-dimensional calculus, over and above the
requirements of plausibility.

From the latter point of view, Minkowski had grounds for satisfaction, although
one imagines that he would have preferred to find that his law diverged from Newton’s
law just enough to account for the observed anomalies. It stands to reason that if
Minkowski had been fully satisfied with his first law, he would not have proposed
a second law in his next paper–which turned out to be the last he would finish for
publication. The latter article developed out of a well-known lecture entitled “Space
and Time” (Raum und Zeit), delivered in Cologne on 21 September, 1908, to the

108I insert the eccentricity e in the second term on the right-hand side, correcting an obvious omission
in Minkowski’s paper (1908, 111, eqn. 31).

109 “. . . eine Entscheidung gegen ein solches Gesetz und die vorgeschlagene modifizierte Mechanik zu
Gunsten des Newtonschen Attraktionsgesetzes mit der Newtonschen Mechanik aus den astronomischen
Beobachtungen nicht abzuleiten sein” (1908, 111).
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Figure 3: Minkowski’s spacetime diagram of particle interaction (1909, 86).

mathematics section of the German Association of Scientists and Physicians in its
annual meeting (Walter, 1999a, 49).

In the final section of his Cologne lecture, Minkowski took up the Lorentz-Poincaré
theory, and showed how to determine the field due to a point charge in arbitrary mo-
tion. On this occasion, just as in his earlier discussion of gravitation in the Grund-
gleichungen, Minkowski referred to a spacetime diagram, but this time he provided
the diagram (Figure 3). Identifying the 4-vector potential components for the source
charge on this diagram, Minkowski remarked that the Liénard-Wiechert law was a
consequence of just these geometric relations.110

Minkowski then described the driving force between two point charges. Adopting
dot notation for differentiation with respect to proper time, he wrote the driving force
exerted on an electron of charge e1 at point P1 by an electron of charge e:

�ee1

�
Pt1 �

Px1

c

�
K; (40)

where Pt1 and Px1 are 4-velocity components of the test charge e1 and K is a certain 4-
vector. This was the first such description of the electrodynamic driving force due to a
4-vector potential, the simplicity of which, Minkowski claimed, compared favorably

110Minkowski’s explanation of the construction of his spacetime diagram (Figure 3) may be para-
phrased in modern terminology as follows. Suppressing the z-axis, we associate two worldlines with
two point charges e1 and e. The worldline of e1 passes through the point at which we wish to deter-
mine the field, P1. To find the retarded position of the source e, we draw the retrograde lightcone (with
broken lines) from P1, which intersects the worldline of e at P , where there is a hyperbola of curvature
% with three infinitely-near points lying on the worldline of e; it has its center at M . The coordinate
origin is established at P , by letting the t -axis coincide with the tangent to the worldline. A line from
P1 intersects this axis orthogonally at point Q; it is spacelike, and if its projection on a constant-time
hypersurface has length r , the length of the 4-vector PQ is r=c. The 4-vector potential has magnitude
e=r and points in the direction of PQ (i.e., parallel to the 4-velocity of e at P ). The x-axis lies parallel
to QP1, such that N is the intersection of a line through M normal to the x-axis.
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with the earlier formulations of Schwarzschild and Lorentz.111

In the same celebratory tone, Minkowski finished his article with a discussion
of gravitational attraction. The “reformed mechanics”, he claimed, dissolved the dis-
turbing disharmonies between Newtonian mechanics and electrodynamics. In order to
provide an example of this dissolution, he asked how the Newtonian law of attraction
would sit with his principle of relativity. Minkowski continued:

I will assume that if two point masses m, m1 describe worldlines, a driving
force vector is exerted by m on m1, exactly like the one in the expression
just given for the case of electrons, except that instead of �ee1, we must
now put in Cmm1.

Applying the substitution suggested by Minkowski to (40), we obtain:

mm1

�
Pt1 �

Px1

c

�
K; (41)

where the coefficients m and m1 refer to proper masses. Minkowski’s new law of
gravitation (41) fully expresses the driving force, unlike the formula (27) of his first
law, which describes only one component. In addition, the 4-vectors are immediately
identifiable from the notation alone. (In order to distinguish the law given in the
Grundgleichungen from that of the Cologne lecture [41], I will call [41] Minkowski’s
second law.)

Since (40) was obtained from Lorentz-Poincaré theory via a 4-vector potential,
the law of gravitation (41) ostensibly implied a 4-vector potential as well; in other
words, following the example set by Poincaré’s second law (10), Minkowski appealed
in turn to a Maxwellian theory of gravitation similar to those of Heaviside, Lorentz,
and Gans.112 Although Minkowski made no effort to attach his law to these field
theories, it was understood by Sommerfeld to be a formal consequence of just such a
theory, as I will show in the next section.

What were the numerical consequences of this new law? Minkowski spared the
reader the details, noting only that in the case of uniform motion of the source, the only
divergence from a Keplerian orbit would stem from the replacement of coordinate
time by proper time. He indicated that the numbers for this case had been worked
out earlier, and his conclusion with respect to this new law was naturally the same:
combined with the new mechanics, it was supported by astronomical observations to
the same extent as the Newtonian law combined with classical mechanics.

Curiously enough, Minkowski offered no explanation of the need for a second law
of attraction. Furthermore, by proposing two laws instead of one, Minkowski tacitly

111Minkowski noted four conditions on K: it is normal to the 4-velocity of e1 at P1, cKt �Kx D 1=r2,
Ky D Ry=.c2r/, and Kz D 0, where r is the spacelike distance between the test charge e1 at P1 and
the advanced position Q of the source e, and Ry is the y-component of e’s 4-acceleration at P. For a
derivation of the 4-potential and 4-force corresponding to Minkowski’s presentation, see Pauli (1921,
644–645).

112See above, p. 5, Heaviside (1893), and Gans (1905). Theories in which the gravitational field is
determined by equations having the form of Maxwell’s equations were later termed vector theories of
gravitation by Max Abraham (1914, 477). For a more recent version of such a theory, see Coster and
Shepanski (1969).
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acknowledged defeat; despite his criticism of the Poincaré’s approach (see above,
p. 21), he could hardly claim to have solved unambiguously the problem of gravitation.
It may also seem strange that Minkowski discarded the differences between his new
law (41) and the one he had proposed earlier.113

Minkowski revealed neither the motivation behind a second law of gravitation, nor
why he neglected the differences between his two laws, but there is a straightforward
way of explaining both of these mysteries. First, we recall the circumstances of his
Cologne lecture, the final section of which Minkowski devoted to the theme of restor-
ing unity to physics. What he wanted to stress on this occasion was that mechanics
and electrodynamics harmonized in his four-dimensional scheme of things:

In the mechanics reformed according to the world postulate, the disturb-
ing disharmonies between Newtonian mechanics and modern electrody-
namics fall out on their own.114

To support this view, Minkowski had to show that his reformed mechanics was a
synthesis of classical mechanics and electrodynamics. A Maxwellian theory of grav-
itation fit the bill quite well, and consequently, Minkowski brought out his second
law of gravitation (41). Clearly, this was not the time to point out the differences
between his two laws. On the contrary, it was the perfect occasion to observe that
a law of gravitation derived from a 4-vector potential formally identical to that of
electrodynamics was observationally indistinguishable from Newton’s law. Naturally,
Minkowski seized this opportunity.

Sadly, Minkowski did not live long enough to develop his ideas on gravitation
and electrodynamics; he died on 12 January, 1909, a few days after undergoing an
operation for appendicitis. At the time, no objections to a field theory of gravitation
analogous to Maxwell’s electromagnetic theory were known, apart from Maxwell’s
own sticking-points (see above, p. 6). However, additional objections to this approach
were raised by Max Abraham in 1912, after which the Maxwellian approach withered
on the vine, as Gustav Mie and others pursued unified theories of electromagnetism
and gravitation.115

Minkowski’s first law of gravitation fared no better than his second law, but the
four-dimensional language in which his two laws were couched had a bright future.
The first one to use Minkowski’s formal ideas to advantage was Sommerfeld, as we
will see next.

113Minkowski’s neglect of the differences between his two theories may explain why historians have
failed to distinguish them. The principal difference between the two laws stems from the presence of
acceleration effects in the second law. By 1905 it was known that accelerated electrons radiate en-
ergy, such that by formal analogy, a Maxwellian theory of gravitation should have featured accelerated
point masses radiating “gravitational” energy. For a brief overview of research performed in the first
two decades of the twentieth century on the energy radiated from accelerated electrons, see Whittaker
(1951–1953, 2:246).

114“In der dem Weltpostulate gemäß reformierten Mechnaik fallen die Disharmonien, die zwischen
der Newtonschen Mechanik und der modernen Elektrodynamik gestört haben, von selbst aus” (1909,
§5).

115Abraham showed that a mass set into oscillation would be unstable due to the direction of energy
flow (Norton, 1992, 33). On the early history of unified field theories, see the reference in note 12.
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3 Arnold Sommerfeld’s hyper-Minkowskian laws of grav-
itation

Neither Poincaré’s nor Minkowski’s work on gravitation and relativity drew comment
until 25 October, 1910, when the second installment of Arnold Sommerfeld’s vectorial
version of Minkowski’s calculus, entitled “Four-dimensional vector analysis” (Vierdi-
mensionale Vektoranalysis), appeared in the Annalen der Physik (1910b). Sommer-
feld’s contribution differs from those of Poincaré and Minkowski in that it is openly
concerned with the presentation of a new formalism, much as its title indicates. In this
section, I discuss Sommerfeld’s interest in vectors, the salient aspects of his 4-vector
formalism, and his portrayal of Poincaré’s and Minkowski’s laws of gravitation.

Sommerfeld displayed a lively interest in vectors, beginning with his editorship
of the physics volume of Klein’s six-volume Encyklopädie in the summer of 1898.116

He imposed a certain style of vector notation on his contributing authors, including
typeface, terminology, symbolic representation of operations, units and dimensions,
and the choice of symbols for physical quantities. Articles 12 to 14 of the physics
volume appeared in 1904, and were the first to implement the notation scheme backed
by Sommerfeld, laid out the same year in the Physikalische Zeitschrift.117 While Som-
merfeld belonged to the Vector Commission formed at Felix Klein’s behest in 1902, it
was clear to him as early as 1901 that the article on Maxwell’s theory (commissioned
to Lorentz) would serve as a “general directive” for future work in electrodynamics.118

His intuition turned out to be correct: the principal “vector” of influence was Lorentz’s
Article 13 (1904b), featuring sections on vector notation and algebra, which set a de
facto standard for vector approaches to electrodynamics.

As mentioned above (p. 17), only one effort to extend Poincaré’s four-dimensional
approach beyond the domain of gravitation was published prior to Minkowski’s Grund-
gleichungen. By 1910, the outlook for relativity theory had changed due to the author-
itative support of Planck and Sommerfeld, the announcement of experimental results
favoring Lorentz’s electron theory, and the broad diffusion (in 1909) of Minkowski’s
Cologne lecture. Dozens of physicists and mathematicians began to take an interest in
relativity, resulting in a leap in relativist publications.119

The principal promoter of Minkowskian relativity, Sommerfeld must have felt by
1910 that it was the right moment to introduce a four-dimensional formalism. He was
not alone in feeling this way, for three other formal approaches based on Minkow-
ski’s work appeared in 1910. Two of these were 4-vector systems, similar in some
respects to Sommerfeld’s, and worked out by Max Abraham and the American physi-
cal chemist Gilbert Newton Lewis, respectively. A third, non-vectorial approach was
proposed by the Zagreb mathematician Vladimir Varičak. Varičak’s was a real, four-

116Sommerfeld’s work on the Encyklopädie is discussed in an editorial note to his scientific corre-
spondence (Sommerfeld, 2001–2004, 1:40).

117Reiff and Sommerfeld (1904); Lorentz (1904b,c); Sommerfeld (1904). The scheme proposed by
Sommerfeld differed from that published in articles 12 to 14 of the Encyklopädie only in that the
operands of scalar and vector products were no longer separated by a dot.

118Sommerfeld to Lorentz, 21 March, 1901, Sommerfeld (2001–2004, 1:191). On Sommerfeld’s
participation on the Commission see Reich (1996) and Sommerfeld (2001–2004, 1:144).

119For bibliometric data, and discussions of Sommerfeld’s role in the rise of relativity theory, see
Walter (1999a, 68–73), and (1999b, 96, 108).
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dimensional, coordinate-based approach relying on hyperbolic geometry. Sommerfeld
probably viewed this system as a potential rival to his own approach; although he did
not mention Varičak, he wrote that a non-Euclidean approach was possible but could
not be recommended (1910a, 752, note 1). Of the three alternatives to Sommerfeld’s
system, the non-Euclidean style pursued by Varičak and others was the only one to
obtain even a modest following. An investigation of the reasons for the contemporary
neglect of these alternative four-dimensional approaches is beyond the purview of our
study; for what concerns us directly, none of these methods was applied to the problem
of gravitation.120

Sommerfeld’s paper, like those of Abraham, Lewis, and Varičak, emphasized for-
malism, and in this it differed from the Grundgleichungen, as mentioned above. Like
the latter work, it focused attention on the problem of gravitation. Following the ex-
ample set by both Poincaré and Minkowski, Sommerfeld capped his two-part Annalen
paper with an application to gravitational attraction, which consisted of a reformu-
lation, comparison and commentary of their work in his own terms. Not only was
Sommerfeld’s comparison of Poincaré’s and Minkowski’s laws of gravitation the first
of its kind, it also proved to be the definitive analysis for his generation.

Sommerfeld’s four-dimensional vector algebra and analysis offered no new 4-
vector or 6-vector definitions, but it introduced a suite of 4-vector functions, notation,
and vocabulary. The most far-reaching modification with respect to Minkowski’s cal-
culus was the elimination of lor (cf. p. 29) in favor of extended versions of ordinary
vector functions. In Sommerfeld’s notational scheme, the ordinary vector functions
div, rot, and grad (used by Lorentz in his Encyklopädie article on Maxwell’s theory)
were replaced by 4-vector counterparts marked by a leading capital letter: Div, Rot,
and Grad. These three functions were joined by a 4-vector divergence marked by
German typeface, Div. Sommerfeld chose to retain � (cf. note 20), while noting the
equivalence to his 4-vector functions: � D Div Grad. The principal advantage of the
latter functions was that their meaning was familiar to physicists. In the same vein,
Sommerfeld supplanted Minkowski’s unwieldy terminology of “spacetime vectors of
the first and second type” (Raum-Zeit-Vektoren Iter und IIter Art) with the more succinct
“four-vector” (Vierervektor) and “six-vector” (Sechservektor). The result was a com-
pact and transparent four-dimensional formalism differing as little as possible from
the ordinary vector algebra employed in the physics volume of the Encyklopädie.121

To show how his formalism performed in action, Sommerfeld first took up the
geometric interpretation and calculation of the electrodynamic 4-vector potential and
4-force. In the new notation, Sommerfeld wrote the electrodynamic 4-force K between
two point charges e and e0 in terms of three components in the direction of the lightlike

120See Abraham (1910); Lewis (1910a,b); Varičak (1910). On Varičak’s contribution see Walter
(1999b).

121Not all of Sommerfeld’s notational choices were retained by later investigators; Laue, for instance,
preferred a notational distinction between 4-vectors and 6-vectors. For a summary of notation used by
Minkowski, Abraham, Lewis, and Laue, see Reich (1994).
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4-vector R, the source 4-velocity B, and the 4-acceleration PB:

4�KR D
ee0

c.RB/2

 
c2 � .R PB/

.RB/
.B0B/C .B0

PB/

!
R;

4�KB D
�ee0

c.RB/2
c2 � .R PB/

.RB/
.B0R/B;

4�K PB D
�ee0

c.RB/2
c2 � .R PB/

.RB/
.B0R/ PB;

(42)

where parentheses indicate scalar products. Sommerfeld was careful to note the equiv-
alence between (42) and what he called Minkowski’s “geometric rule” (40).

In the ninth and final section of his paper, Sommerfeld took up the law of elec-
trostatics and the classical law of gravitation. The former was naturally considered
to be a special case of (42), with two point charges relatively at rest. The same was
true for the law of gravitation, as Sommerfeld noted that Minkowski had proposed a
formal variant of (40) as a law of gravitational attraction (what I call Minkowski’s sec-
ond law, [41]). Sommerfeld’s expression of the electrodynamic 4-force is unwieldy,
but takes on a simpler form in case of uniform motion of the source ( PB D 0). Ne-
glecting the 4� factor, and substituting �mm0 for Cee0, Sommerfeld expressed the
corresponding version of Minkowski’s second law:

�mm0c
.B0B/R � .B0R/B

.RB/3
: (43)

The latter law is compact and self-contained, in that its interpretation depends only on
the definitions and rules of the algebraic formalism. In this sense, (43) improves on
the Minkowskian (41), even if it represents only a special case of the latter law.

Once Sommerfeld had expressed Minkowski’s second law in his own terms, he
turned to Poincaré’s two laws. The transformation of Poincaré’s first law was more
laborious than the transformation of Minkowski’s second law. First of all, Sommer-
feld transcribed Poincaré’s first law (9) into his 4-vector notation, while retaining the
original designation of invariants. This step itself was not simple: in order to cast
Poincaré’s kinematic invariants as scalar products of 4-vectors, Sommerfeld had to
adjust the leading sign of (9), to obtain:

k0K

mm0
D �

1

B3C

�
CR �

1

c
AB

�
: (44)

Sommerfeld noted the “correction” of what he called an “obvious sign error” in (9).122

The difference is due to Poincaré’s irregular derivation of the kinematic invariants (1),
as mentioned above (p. 9), although from Sommerfeld’s remark it is not clear that he
saw it this way.

The transformation of Poincaré’s second law (10) was less straightforward. It ap-
pears that instead of deriving a 4-vector expression as in the previous case, Sommer-
feld followed Poincaré’s lead by eliminating the Lorentz-invariant factor C from the

122“Mit Umkehr des bei Poincaré offenbar versehentlichen Vorzeichens” (1910b, 686, note 1).
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Figure 4: Sommerfeld’s illustration of the two laws of gravitation (1910b, 687).

denominator on the right-hand side of the first law (44), which results in the equation:

k0K

mm0
D �

1

B3

�
CR �

1

c
AB

�
: (45)

Sommerfeld expressed Poincaré’s kinematic invariants A, B, and C as scalar prod-
ucts:

A D �
1

c
.RB0/; B D �

1

c
.RB/; C D �

1

c2
.B0B/: (46)

He also replaced the mass term m0 in (44) and (45) by the product of rest mass m0 and
the Lorentz factor k0, i.e., m0 D m0k0. At this point, he could express Poincaré’s two
laws exclusively in terms of constants, scalars, and 4-vectors:

mm0c3 .B0B/R � .B0R/B

.RB/3.B0B/
; (47)

�mm0c
.B0B/R � .B0R/B

.RB/3
(48)

In the latter form, Sommerfeld’s (approximate) version of Minkowski’s second law
(43) matches exactly his (exact) version of Poincaré’s second law (48). Sommerfeld
pointed out this equivalence, and noted again that the difference between (47) and (48)
amounted to a single factor, in the scalar product of 4-velocities: C D �.B0B/=c

2.
(All six Lorentz-invariant laws of gravitation of Poincaré, Minkowski, and Sommer-
feld are presented in Table 1.) Sommerfeld summed up his result by saying that when
the acceleration of the active mass is neglected, Minkowski’s special formulation of
Newton’s law (41) is subsumed by Poincaré’s indeterminate formulation. In other
words, the approximate form of Minkowski’s second law was captured by Poincaré’s
remark that his first law (9) could be multiplied by an unlimited number of Lorentz-
invariant quantities (within certain constraints).

The message of the basic equivalence of Poincaré’s pair of laws to Minkowski’s
pair echoes the latter’s argument in his Cologne lecture, to the effect that spacetime
mechanics removed the disharmonies of classical mechanics and electrodynamics (see
above, p. 39). This message was reinforced by Sommerfeld’s graphical representation
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of the 4-vector components of these laws in a spacetime diagram, reproduced in Fig-
ure 4. The 4-vector relations in (47) and (48) are shown in the figure; the worldline of
the active mass m appears on the left-hand side of the diagram, and the line OL (which
coincides with R) lies on the retrograde lightcone from the origin O on the worldline
of the passive mass m0. All three 4-vectors in (47) and (48), R, B0, and B0 are rep-
resented in the diagram, along with an angle  corresponding to the Lorentz-invariant
C D cos distinguishing (47) and (48).123

So far, Sommerfeld had dealt with three of the four laws of gravitation, leaving
out only Minkowski’s first law. Since Minkowski’s presentation of his first law was
a purely geometric affair, Sommerfeld had no choice but to reconstruct his argument
with reference to a spacetime diagram describing the components of (27) in terms of
the angle  and a fourth 4-vector, S. He showed the numerator in (47) and (48) to be
equal to the product .B0B/S, and expressed the denominator of (48) in terms of the
length R0 of the 4-vector R0 in Figure 4, to obtain the formula:

K D mm0 cos 
S

R03
; (49)

which he showed to be equivalent to (47). Eliminating the factor C D cos from the
latter equation, Sommerfeld obtained an expression for (48) in terms of S:

K D
mm0S

R03
: (50)

The latter two driving force equations, (49) and (50), were thus rendered geometrically
by Sommerfeld, facilitating the comprehension of their respective vector-symbolic
expressions (47) and (48).

In general, the driving force of (49) is weaker, ceteris paribus, than that of (50) due
to the cosine in the former, but Sommerfeld did not develop these results numerically,
noting only that the four laws were equally valid from an empirical standpoint.124 He
noted that Poincaré’s analysis allowed for several other laws, but that in all cases,
one sticking-point remained: there was no answer to the question of how to localize
momentum in the gravitational field.

By rewriting Poincaré’s and Minkowski’s laws in his new 4-vector formalism,
Sommerfeld effectively rationalized their contributions for physicists. The goal of his
paper, announced at the outset, was to display the “remarkable simplification of elec-
trodynamic concepts and calculations” resulting from “Minkowski’s profound space-

123Sommerfeld explained Figure 4 roughly as follows: two skew 4-velocities B and B0 determine a
three-dimensional space, containing all the lines shown. Points OLSAP are coplanar, while the trian-
gles OQT and OTS , and the parallelogram LQTS all generally lie in distinct planes. In particular, T

lies outside the plane of OLSAP , and OT is orthogonal to B0. The broken vertical line l represents
the temporal axis of a frame with origin O; a spacelike plane orthogonal to l at O intersects the world-
line of m at point A. The spacelike 4-vector R0 is orthogonal to B, while S is orthogonal to B0; both
R0 and S intersect the origin, while B and B0 together form an angle  .

124This view was confirmed independently by the Dutch astronomer W. de Sitter, who worked out the
numbers for the one-body problem (de Sitter, 1911). De Sitter found the second law to require a post-
Newtonian centennial advance in Mercury’s perihelion of 700, while the first law required no additional
advance. His figure for the second law agrees with the one given by Poincaré (see above, p. 15).
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time conception.”125 Actually, Sommerfeld’s comparison of Poincaré’s and Minkow-
ski’s laws of gravitation was designed to show his formalism in an attractive light.
In realizing this comparison in his own formalism, Sommerfeld smoothed out the id-
iosyncrasies of Poincaré’s method, inappropriately lending him a 4-vector approach.
He felt that Poincaré had “already employed 4-vectors” (1910b, 685), although as
shown in the first section, Poincaré’s use of four-dimensional entities was tightly cir-
cumscribed by the objective of formulating Lorentz-invariants. In Thomas Kuhn’s
optical metaphor (1970, 112), Sommerfeld read Poincaré’s theory through a Minkow-
skian lens; in other words, he read it as a spacetime theory. For Sommerfeld, no less
than for Minkowski, the discussion of gravitation and relativity was modulated by the
programmatic objective of promoting a four-dimensional formalism. Satisfying this
objective without ignoring Poincaré’s work, however, meant rationalizing Poincaré’s
contribution.126

Sommerfeld’s reading of Minkowski’s second law contrasts with its muted exposi-
tion in the original text (see above, p. 39), in that he gave it pride of place with respect
to the other three laws. This change in emphasis on Sommerfeld’s part reflects his
own research interests in electrodynamics, and his outlook on the future direction of
physics.127 But what originally motivated him to propose a 4-dimensional formalism?
The inevitability of a 4-dimensional vector algebra as a standard tool of the physicist
was probably a foregone conclusion for him by 1910, such that the promotion of the
ordinary vector notation used in the Encyklopädie obliged him to propose essentially
the same notation for 4-vectors. Sommerfeld referred modestly to his work as an “ex-
planation of Minkowskian ideas” (1910a, 749), but as he explained to his friend Willy
Wien, co-editor with Planck of the Annalen der Physik, Minkowski’s original 4-vector
scheme had evolved. “The geometrical systematics” Sommerfeld announced, “is now
hyper-Minkowskian.”128 In the same letter to Wien, Sommerfeld confessed that his pa-
per had required substantial effort, and he expressed doubt that it would prove worth-
while. Sommerfeld displayed either pessimism or modesty here, but in fact his effort
was richly rewarded, as his streamlined four-dimensional algebra and analysis quickly
won both Einstein’s praise and the confidence of his contemporaries.129

Sommerfeld’s work was eagerly read by young theoretical physicists raised in
the heady atmosphere of German vectorial electrodynamics. One of the early adepts
of Sommerfeld’s formalism was Philipp Frank (1884–1966), who was then a Privat-
dozent in Vienna. By way of introduction to his 1911 study of the Lorentz-covariance

125“In dieser und einigen anschließenden Studien möchte ich darstellen, wie merkwürdig sich die
elektrodynamischen Begriffe und Rechnungen vereinfachen, wenn man sich dabei von der tiefsinnigen
Raum-Zeit-Auffassung Minkowskis leiten läßt” (Sommerfeld, 1910a, 749).

126Faced with a similar situation in his Cologne lecture of September, 1908, Minkowski simply ne-
glected to mention Poincaré’s contribution; see Walter (1999a, 56).

127Sommerfeld later preferred Gustav Mie’s field theory of gravitation. Such an approach was more
promising than that of Poincaré and Minkowski, which grasped gravitation “to some extent as action at
a distance” (1913, 73).

128“Die geometrische Systematik ist jetzt hyper-minkowskisch” (Sommerfeld to Wien, 11 July, 1910,
Sommerfeld 2001–2004, 1:388).

129Einstein to Sommerfeld, July, 1910, Einstein (1993, 243–247); Sommerfeld (2001–2004, 1:386–
388). In light of Einstein and Laub’s earlier dismissal of Minkowski’s formalism (see above, p. 28),
Sommerfeld naturally supposed that Einstein would disapprove of his system, prompting the protest:
“Wie können Sie denken, dass ich die Schönheit einer solchen Untersuchung nicht zu schätzen wüsste?”
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of Maxwell’s equations, Frank described the new four-dimensional algebra as a com-
bination of “Sommerfeld’s intuitiveness with Minkowski’s mathematical elegance”
(1911, 600). He recognized, however, that of late, physicists had been overloaded
with outlandish symbolic systems and terminology, and promised to stay within the
boundaries of Sommerfeld’s system, at least as far as this was possible.

Physicists were indeed inundated in 1910–1911 with a bewildering array of new
symbolic systems, including an ordinary vector algebra (Burali-Forti and Marcolongo,
1910), and a quaternionic calculus (Conway, 1911), in addition to the hyperbolic-
coordinate system and three 4-vector formalisms already mentioned. By 1911, 4-
vector and 6-vector operations featured prominently in the pages of the Annalen der
Physik. Out of the nine theoretical papers concerning relativity theory published in
the Annalen that year, five made use of a four-dimensional approach to physics, ei-
ther in terms of 4-vector operations, or by referring to spacetime coordinates. Four
out of five authors of “four-dimensional” papers cited Minkowski’s or Sommerfeld’s
work; the fifth referred to Max Laue’s new relativity textbook (1911). This timely
and well-written little book went far in standardizing the terminology and notation of
four-dimensional algebra, such that by January of 1912, Max Abraham preferred the
Sommerfeld-Laue notation to his own for the exposition of his theory of gravitation
(1910; 1912a; 1912b).

While young theorists were quick to pick up on the Sommerfeld-Laue calculus,
textbook writers did not follow the trend. Of the four textbooks to appear on relativity
in 1913–1914, only the second edition of Laue’s book (1913) employed this formal-
ism. Ebenezer Cunningham presented a 4-dimensional approach based on Minkow-
ski’s work, but explicitly rejected Sommerfeld’s “quasi-geometrical language”, which
conflicted with his own purely algebraic presentation (1914, 99). A third textbook by
Ludwik Silberstein (1914), a former student of Planck, gave preference to a quater-
nionic presentation, while the fourth, by Max B. Weinstein (1913), opted for Carte-
sian coordinates. Curiously enough, Weinstein dedicated his work to the memory of
Minkowski. Apparently disturbed by this profession of fidelity, Max Born, who had
briefly served as Minkowski’s assistant, deplored the form of Weinstein’s approach to
relativity:

[Minkowski] put perhaps just as much value on his presentation as on its
content. For this reason, I do not believe that entrance to his conceptual
world is facilitated when it is overwhelmed by an enormous surfeit of
formulas.130

By this time, Born himself had dropped Minkowski’s formalism in favor of the Som-
merfeld-Laue approach, such that the target of his criticism was Weinstein’s disregard
for 4-dimensional methods in general, and not the neglect of Minkowski’s matrix cal-
culus.131 What Born was pointing out here was that it had become highly impractical

130“[Minkowski] hat auf seine Darstellung vielleicht ebenso viel Wert gelegt, wie auf ihren Inhalt.
Darum glaube ich nicht, daß der Zugang zu seiner Gedankenwelt erleichtert wird, wenn sie von einer
ungeheuren [sic] Fülle von Formeln überschüttet wird” (1914).

131By the end of 1911 Born had already acknowledged that, despite its “formal simplicity and greater
generality compared to the tradition of vectorial notation,” Minkowski’s calculus was “unable to hold
its ground in mathematical physics” (1912, 175).
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to study the theory of relativity without recourse to a 4-dimensional formalism. This
may explain why Laue’s was the only one of the four textbooks on relativity to be
reedited, reaching a sixth edition in 1955.

In summary, the language developed by Sommerfeld for the expression of the
laws of gravitation of Poincaré and Minkowski endured, while the laws themselves
remained tentative at best. This much was clear as early as 1912, when Jun Ishi-
wara reported from Japan on the state of relativity theory. This theory, Ishiwara felt,
had shed no light on the problem of gravitation, with a single exception: Minkow-
ski and Sommerfeld’s “formal mathematical treatment” (1912, 588). The trend from
Poincaré to Sommerfeld was one of increasing reliance on formal techniques catering
to Lorentz-invariance; in the space of five years, the physical content of the laws of
gravitation remained stable, while their formal garb evolved from Cartesian to hyper-
Minkowskian.

4 Conclusion: On the emergence of the four-dimen-
sional view

After a century-long process of accommodation to the use of tensor calculus and
spacetime diagrams for analysis of physical interactions, the mathematical difficulties
encountered by the pioneers of 4-dimensional physics are hard to come to terms with.
Not only is the oft-encountered image of flat-spacetime physics as a trivial conse-
quence of Einstein’s special theory of relativity and Felix Klein’s geometry consistent
with such accommodation, it reflects Minkowski’s own characterization of the back-
ground of the four-dimensional approach (cf. p. 24). However, this description ought
not be taken at face value, being better understood as a rhetorical ploy designed to in-
duce mathematicians to enter the nascent field of relativistic physics (Walter, 1999a).
When the principle of relativity was formulated in 1905, even for one as adept as Henri
Poincaré in the application of group methods, the path to a four-dimensional language
for physics appeared strewn with obstacles. Much as Poincaré had predicted (above,
p. 16), the construction of this language cost Minkowski and Sommerfeld considerable
pain and effort.

Clear-sighted as he proved to be in this regard, Poincaré did not foresee the emer-
gence of forces that would accelerate the construction and acquisition of a four-dimen-
sional language. With hindsight, we can identify five factors favoring the use and
development of a four-dimensional language for physics between 1905 and 1910:
the elaboration of new concepts and definitions, the introduction of a graphic model
of spacetime, the experimental confirmation of relativity theory, the vector-symbolic
movement, and problem-solving performance.

In the beginning, the availability of workable four-dimensional concepts and defi-
nitions regulated the analytic reach of a four-dimensional approach to physics. Poincaré’s
discovery of the 4-vectors of velocity and force in the course of his elaboration of
Lorentz-invariant quantities, and Minkowski’s initial misreading of Poincaré’s defini-
tions underline how unintuitive these notions appeared to turn-of-the-century mathe-
maticians. The lack of a 4-velocity definition visibly hindered Minkowski’s elabora-
tion of spacetime mechanics and theory of gravitation. It is remarkable that even after
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Minkowski presented the notions of proper time, worldline, rest-mass density, and the
energy-momentum tensor, putting the spacetime electrodynamics and mechanics on
the same four-dimensional footing, his approach failed to convince physicists. Never-
theless, all of these discoveries extended the reach of the four-dimensional approach,
in the end making it a viable candidate for the theorist’s toolbox.

Next, Minkowski’s visually-intuitive spacetime diagram played a decisive role in
the emergence of the four-dimensional view. While the spacetime diagram reflects
some of the concepts mentioned above, its utility as a cognitive tool exceeded by far
that of the sum of its parts. In Minkowski’s hands, the spacetime diagram was more
than a tool, it was a model used to present both of his laws of gravitation. Beyond their
practical function in problem-solving, spacetime diagrams favored the diffusion in
wider circles of both the theory of relativity and the four-dimensional view of this the-
ory, in particular among non-mathematicians, by providing a visually intuitive means
of grasping certain consequences of the theory of relativity, such as time dilation and
Lorentz contraction. Minkowski’s graphic model of spacetime thus enhanced both
formal and intuitive approaches to special relativity.

In the third place, the ultimate success of the four-dimensional view hinged on
the empirical adequacy of the theory of relativity. It is remarkable that the conceptual
groundwork, and much of the formal elaboration of the four-dimensional view was
accomplished during a time when the theory of relativity was less well corroborated
by experiment than its rivals. The reversal of this situation in favor of relativity theory
in late 1908 favored the reception of the existing four-dimensional methods, and pro-
vided new impetus both for their application and extension, and for the development
of alternatives, such as that of Sommerfeld.

The fourth major factor influencing the elaboration of a four-dimensional view of
physics was the vector-symbolic movement in physics and mathematics at the turn of
the twentieth century (McCormmach, 1976, xxxi). The participants in this movement,
in which Sommerfeld was a leading figure, believed in the efficacy of vector-symbolic
methods in physics and geometry, and sought to unify the plethora of notations em-
ployed by various writers. The movement’s strength varied from country to country; it
was largely ignored in France, for example, in favor of the coordinate-based notation
favored by Poincaré and others. Poincaré’s pronounced disinterest in the application
and development of a four-dimensional calculus for physics was typical of contempo-
rary French attitudes toward vector-symbolic methods. In Germany, on the other hand,
electrodynamicists learned Maxwell’s theory from the mid-1890s in terms of curl h

and div E. In Zürich and Göttingen during this period, Minkowski instructed students
– including Einstein – in the ways of the vector calculus. Unlike Poincaré, Minkowski
was convinced that a four-dimensional language for physics would be worth the ef-
fort spent on its elaboration, yet he ultimately abandoned the vector-symbolic model
in favor of an elegant and sophisticated matrix calculus. This choice was deplored
by physicists (including Einstein), and mooted by Sommerfeld’s conservative exten-
sion of the standard vector formalism into an immediately successful 4-vector algebra
and analysis. In sum, the vector-symbolic movement functioned alternatively as an
accelerator of the elaboration of four-dimensional calculi (existing systems served as
templates), and as a regulator (penalizing Minkowski’s neglect of standard vector op-
erations).
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The fifth and final parameter affecting the emergence of the four-dimensional view
of physics was problem-solving performance. From the standpoint of ease of calcu-
lation, any four-dimensional vector formalism at all compared well to a Cartesian-
coordinate approach, as Weinstein’s textbook demonstrated; the advantage of ordinary
vector methods over Cartesian coordinates was less pronounced. As we have seen,
Poincaré applied his approach to the problem of constructing a Lorentz-invariant law
of gravitational attraction, and was followed in turn by Minkowski and Sommerfeld,
both of whom also provided examples of problem-solving. In virtue of the clarity
and order of Sommerfeld’s detailed, coordinate-free comparison of the laws of grav-
itation of Poincaré and Minkowski, his 4-vector algebra appeared to be the superior
four-dimensional approach, just when physicists and mathematicians were turning to
relativity in greater numbers.
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Table 1: Lorentz-invariant laws of gravitation, 1906–1910

Poincaré (1906)a Minkowski (1908)b Sommerfeld (1910)c

X1 D
x

k0B3
� �1

k1

k0

A

B3C

Y1 D
y

k0B3
� �1

k1

k0

A

B3C

Z1 D
z

k0B3
� �1

k1

k0

A

B3C

T1 D �
r

k0B3
�

k1

k0

A

B3C

mm
∗

�
OA0

B∗D∗

�3

BD
∗

mm0c3 .B0B/R � .B0R/B

.RB/3.B0B/

X1 D
�

B3
�
��0 � ��0

B3

Y1 D
�

B3
�
��0 � ��0

B3

Z1 D
�

B3
�
��0 � ��0

B3

mm1

�
Pt1 �

Px1

c

�
K �mm0c

.B0B/R � .B0R/B

.RB/3

aMass terms are neglected, such that the right-hand side of each equation is implicitly multiplied by
the product of the two masses. When both sides of the four equations are multiplied by the factor k0,
they express components of a 4-vector, k0.X1;Y1;Z1; iT1/. The constants k0 and k1 are defined as:

k0 D 1=
p

1 �
P
�2 and k1 D 1=

q
1 �

P
�2

1
. A, B, and C denote the last three Lorentz-invariants

in (1): A D
t�
P

x�
p

1�
P

�2
, B D

t�
P

x�1q
1�
P

�2
1

, C D
1�
P

��1q
.1�

P
�2/.1�

P
�2

1/
, where

P
� and

P
�1 designate the

ordinary velocities of the passive and active mass points, with components �, �, �, and �1, �1, �1. The
time t is set equal to the negative distance between the passive mass point and the retarded position
of the active mass point, t D �

pP
x2 D �r . Poincaré’s second law is shown in the bottom row;

he neglected to write the fourth component T1, determined from the first three by the orthogonality
condition T1 D

P
X1� . The new variables in the bottom row are:

� D k1.x C r�1/; � D k1.y C r�1/; � D k1.z C r�1/;

�0
D k1.�1z � �1y/; �0

D k1.�1x � �1z/; �0
D k1.�1y � x�1/:

bThe formula in the top row describes the first three components of the driving force; the fourth com-
ponent is obtained analytically. The constants m and m∗ designate the passive and active proper mass,
respectively, while the remaining letters stand for spacetime points, as reconstructed in Figure 1 (p. 32).
The formula in the bottom row represents the driving force of gravitation as described, but not formally
expressed, in Minkowski (1909). The constants m and m1 designate the active and passive proper mass,
Pt1 and Px1 are 4-velocity components of the passive mass, c is the speed of light and K is a 4-vector, for
the definition of which see note 111.
cThe constants m0 and m designate the passive and active proper mass, respectively, c denotes the speed
of light, B0 and B represent the corresponding 4-velocities, and R stands for the lightlike interval
between the mass points.
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