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Chapter 1

A self-contained summary of the theory of special relativity is given, which provides the
space-time frame for classical electrodynamics. Historically [2] special relativity emerged
out of electromagnetism. Nowadays, is deserves to be emphasized that special relativity
restricts severely the possibilities for electromagnetic equations.

1.1 Special Relativity
Let us deal with space and time in vacuum. The conventional time unit is one
second [s]. (1.1)

Here, and in the following abbreviations for units are placed in brackets | |. For a long time
period the second was defined in terms of the rotation of the earth as % X % X i of the mean
solar day. Nowadays most accurate time measurements rely on atomic clocks. They work by
tuning a electric frequency into resonance with some atomic transition. Consequently, the
second has been re—defined, such that the frequency of the light between the two hyperfine
levels of the ground state of the cesium *2C's atom is now exactly 9,192,631,770 cycles per
second.

Special relativity is founded on two basic postulates:

1. Galilee invariance: The laws of nature are independent of any uniform, translational
motion of the reference frame.

This postulate gives rise to a triple infinite set of reference frames moving with constant
velocities relative to one another. They are called inertial frames. For a freely moving
body, i.e. a body which is not acted upon by an external force, inertial systems exist. The
differential equations which describe physical laws take the same form in all inertial frames.
This Galilee invariance was known long before Einstein.

2. The speed c of light in empty space is independent of the motion of its source.
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The second Postulate was introduced by Einstein 1905 [2]. It implies that ¢ takes the same
constant value in all inertial frames. Transformations between inertial frames are implied
which have far reaching physical consequences.

The distance unit

1 meter [m] = 100 centimeters [cm] (1.2)

was originally defined by two scratches on a bar made of platinum—iridium alloy kept at the
International Bureau of Weights and Measures in Sevres, France. As measurements of the
speed of light have become increasingly accurate, it has become most appropriate to exploit
Postulate 2 to define the distance unit. The standard meter is now defined [6] as the distance
traveled by light in empty space during the time of 1/299,792,458 [s]. This makes the speed
of light exactly

¢ = 299,792,458 [m/s]. (1.3)

1.1.1 Natural Units

The units for second (1.1 and meter (1.2) are not independent, as the speed of light is an
universal constant. This allows to define natural units, which are frequently used in nuclear,
particle and astro physics. They define

c=1 (1.4)
as a dimensionless constant, and
1 [s] = 299,792,458 [m]

holds. The advantage of natural units is that factors of ¢ disappear in calculations. The
disadvantage is that, for converting back to conventional units, the appropriate factors have
to be recovered by dimensional analysis. For instance, if time is given in seconds z = t in
natural units converts to = ¢t with x in meters and ¢ given by (1.3).

1.1.2 Definition of distances and synchronization of clocks

The introduced concepts of Galilee invariance and of a constant speed of light are not pure
mathematics, but relate to physical measurements. Therefore, I discuss briefly how to employ
them to reduce measurements of spatial distances to time measurements. Let us consider an
inertial frame K with coordinates (¢, Z). We like to place observers at rest at different places
Z in K. The observers are equipped with clocks of identical making, to define the time ¢ at
Z. The origin Z = 0, in other notation (¢, 6), of K is defined by placing observer O, and his
clock there. We like to place another observer O; at ¥ to define (¢,Z1). How can O; know
to be at 71?7 By using a mirror he can reflect light flashed by observer Oy at him. Observer
Op may measure the polar and azimuthal angles (0, ¢) at which he emits the light and

|.f1’ :CAt/Q,



CHAPTER 1. 3

where At is the time light needs to travel to O; and back. This determines 7; and he can
signal this information to O;. By repeating the measurement, he can make sure that Oy is
not moving with respect to K. For an idealized, force free environment the observers will
then never start moving with respect to one another. Next O; needs to synchronize his clock.
This may be done as follows: Observer Og flashes his instant time ¢y at O, and O; puts his
clock to

tl = t() + |fl|/0

at the instant receiving the signal. In this way (¢,Z) is operationally given. If O, flashes
again his instant time ¢o; over to Oy, the clock of O; will show time t1; = to; + |71]/c at the
instant of receiving the signal. In the same way the time ¢ can be defined at any desired
point ¥ in K.

Now we consider an inertial frame K’ with coordinates (#,Z’), moving with constant
velocity ¥ with respect to K. The origin of K’ is defined through a third observer Oj. What
does it mean that Of moves with constant velocity v with respect to Oy? At times ¢, and
té, observer Oy may flash light signals (the superscript e stands for “emit”) at Of, which are
reflected and arrive back after time intervals Aty and Atge. From principle 2 it follows that
the reflected light needs the same time (measured by Oy in K) to travel from O to Oy, as
the light needed to travel from Oy to Of. Hence, Oy concludes that O received the signal at

toi = to; + Otoi /2, (i =1,2) (1.5)

in the Oy time. This extremely simple equation does look quite complicated for non-
relativistic physics, because the speed on the return path would then be distinct from that
on the arrival path (consider for instance elastic scattering of a very light particle on a very
heavy surface). The constant velocity of light implies that relativistic distance measurements
are simpler than such non-relativistic measurements. For observer Oy the positions Zy; and
Zoo are now defined through the angles (y;, ¢o;) and

|Zoi| = ODtoic/2, (i=1,2). (1.6)

For the assumed force free environment observer O, can conclude that O moves with respect
to him with uniform velocity

17 - (fOQ - fol)/(tog - t(]l) . (17)

Oy may repeat the procedure at later time to;, i = 3,4,--- to check that O/ moves indeed
with uniform velocity.

Similarly, observer O] will find out that Oy move with velocity v = —v. According to

principle 1, observers in K’ can now go ahead to define ¢’ for any point ' in K’, and (¢, ")
is operationally defined. Let us further discuss the motion of Of as observed by Oy. The
equation of motion for the origin of K’ is

/

F(1 = 0) = &+t (1.8)
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with Zy = #o1 — Utp;. The equation for ¥, expresses the fact that for ¢t = to; observer Of is
at Tp;. Shifting his space convention by a constant vector, observer Oy can achieve Zy = 0,
such that equation (1.8) becomes

77 =0)=ut.
Similarly, observer O may choose his space convention such that

7 (Z=0)= -0t

holds.

1.1.3 Lorentz invariance and Minkowski space

Having defined time and space operationally, let us focus on a more abstract discussion.
We consider the two inertial frames with uniform relative motion v: K with coordinates
(t,#) and K’ with coordinates (#,#’). We demand that at time ¢t = ¢’ = 0 their two origins
coincide. This can be achieved, as we have just seen. Now, imagine a spherical shell of
radiation originating at time ¢ = 0 from #¥ = ' = 0. The propagation of the wavefront is
described by

AP —a? -y — 22 =0 in K, (1.9)
and by
A2 —a2?—y?—2?=0 in K. (1.10)
We define 4-vectors (a = 0, 1,2, 3) by
(2%) = (Zf) and (2,) = (ct, —7) . (1.11)

By reasons explained in the next section the components x® are called contravariant and the
components z, covariant. In matrix notation the contravariant 4-vector (z®) is represented
by a column and the covariant 4-vector (z,) as a row.

The FEinstein summation convention is defined by

3
Tax® =Y 1ox”, (1.12)
a=0

and will be employed throughout this script. Equations (1.9) and (1.10) read then
rer® = &' @’'* = 0. (Homogeneous) Lorentz transformations are defined as the group of
transformations which leave the distance

s? = x,x®  invariant. (1.13)

If the initial condition ¢ = 0 and ¥ (¥ = 0) = Z(¥') = 0 for t = 0 is replaced by and arbitrary
/

) (@'*—y'*) still holds. Inhomogeneous Lorentz

one, the equation (z,—vya,)(z*—y*) = (2/,—y
or Poincaré transformations are defined as the group of transformations which leave

= (14 —yo)(x* —y*) invariant. (1.14)
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In contrast to the Lorentz transformations the Poincaré transformations include invariance
under translations
% — 2%+ a” and y* — y* + a”

where a® is a constant vector. A fruitful concept is that of a 4-dimensional space-time,
called Minkowski space. Equation (1.14) gives the invariant metric of this space. Compared
to the norm of 4-dimensional Euclidean space, the crucial difference is the relative minus
sign between time and space components. The light cone of a 4-vector zf is defined as the
set of vectors x® which satisfy

(x —20)* = (20 — Toa) (2% — 2§) = 0.
The light cone separates events which are timelike and spacelike with respect to zff, namely
(x — 20)> > 0 for timelike

and
(x — 70)*> < 0 for spacelike.

We shall see later, compare equation (1.43), that the time ordering of spacelike points is
distinct in different inertial frames, whereas it is the same for timelike points. For the choice
zg = 0 this Minkowski space situation is depicted in figure 1.1. On the abscissa we have the
projection of the three dimensional Euclidean space on r = |Z|. The regions future and past
of this figure are the timelike points of o = 0, whereas elsewhere are the spacelike points.

To understand special relativity in some depth, we have to explore Lorentz and Poincaré
transformations in some details. Before we come to this, it is convenient to introduce some
relevant calculus.

1.1.4 Vector and tensor notation

Let us define a general transformation x — 2’ through
¢ =a2%x)=2"" (xo, zt xz,x?’) , a=0,1,2,3. (1.15)

This means, x'® is a function of four variables and, when it is needed, this function is assumed
to be sufficiently often differentiable with respect to each of its arguments. In the following
we consider the transformation properties of various quantities (scalars, vectors and tensors)
under x — 2’
A scalar is a single quantity whose value is not changed under the transformation (1.15).
A j-vector A%, (a = 0,1,2,3) is said contravariant if its components transform according

tO o
ox G

A = .
ozh

(1.16)
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Future

ct

Elsewhere A % Elsewhere

Past

r

Figure 1.1: Minkowski space: Seen from the spacetime point A at the origin, the spacetime
points in the forward light cone are in the future, those in the backward light cone are in
the past and the spacelike points are “elsewhere”, because their time-ordering depends on
the inertial frame chosen. Paths of two clocks which separate at the origin (the straight line
one stays at rest) and merge again at a future space-time point B are also indicated. For
the paths shown the clock moved along the curved path will, at B, show an elapsed time of
about 70% of the elapsed time shown by the other clock (i.e. the one which stays at rest).

An example is A* = dz®, where (1.16) reduces to the well-known rule for the differential of
a function of several variable (f*(x) = 2'*(x)):

ax/a

dz'™ = dz”.
0xP
Remark: In this general framework the vector x® is not always contravariant. When
ox'
[ Z—
8= 9yh

defines a linear transformation with constant (i.e. space-time independent) coefficients a%;,
the vector x“ itself is contravariant. In the present framework we are only interested in that
case (the other leads into general relativity).

A 4-vector is said covariant when it transforms like

o0z
B, = am/aBg. (1.17)
An example is
0
By =0, = —, (1.18)
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because of

J 0z° 0
ox'e O’ QxP’
The inner or scalar product of two vectors is defined as the product of the components of a

covariant and a contravariant vector:
B-A=B,A“. (1.19)

With this definition the scalar product is an invariant under the transformation (1.15). This
follows from (1.16) and (1.17):

0z° 0z’ OxP
rA v — T — 48 T=RB.
B A = e D BgA" = o BgA" = 6" BgAY = B - A.
Here the Kronecker delta is defined by:
1 for a=p
o _ $ B _ 5
5= % {0 for o # f. (1.20)

Vectors are rank one tensors. Tensors of general rank k are quantities with k£ indices, like
for instance

ajan...
T QG

The convention is that the upper indices transform contravariant and the lower transform
covariant. For instance, a contravariant tensor of rank two F*? consists of 16 quantities that

transform according to
_ ' 0x'’ s
oz O0xf

A covariant tensor of rank two G, transforms as

F/Oz,@

, oxY 0x°
8 Py 9B

The inner product or contraction with respect to any pair of indices, either on the same
tensor or between different tensors, is defined in analogy with (1.19). One index has to be
contravariant and the other covariant.

A tensor S8 is the symmetric in @ and 3 when

S...cx..ﬂ... — Sﬂa
A tensor AP is the antisymmetric in o and 3 when
Aaﬁ — _Aﬁa
Let S be a symmetric and A% be an antisymmetric tensor. It holds

S f g =0, (1.21)
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Proof:

and consequently zero. The first step exploits symmetry and antisymmetry, and the second
step renames the summation indices. Every tensor can be written as a sum of its symmetric
and antisymmetric parts

by simply defining
1 1
e e U I BN and - a..B.. - B s Bea.
T; =3 (T +T ) and Ty =3 @ T ). (1.23)

So far the results and definitions are general. We now specialize to Poincaré transforma-
tions. The specific geometry of the space—time of special relativity is defined by the invariant

distance s?, see eqn.(1.14). In differential form, the infinitesimal interval ds that defines the

norm of our space is
(ds)? = (d2°)? — (dz")? — (da?)* — (dz®)>. (1.24)

Here we have used superscripts on the coordinates in accordance to our insight that dx® is
a contravariant vector. Introducing a metric tensor g,3 we re-write equation (1.24) as

(ds)* = gap dzda”. (1.25)
Comparing (1.24) and (1.25) we see that for special relativity g,s is diagonal:
goo =1, g11 = ga2 = g33 = —1 and g.3 =0 for a # (. (1.26)

Comparing (1.25) with the invariant scalar product (1.19), we conclude that

To = Jap 2P,

The covariant metric tensor lowers the indices, i.e. transforms a contravariant into a covariant
vector. Correspondingly the contravariant metric tensor ¢®? is defined to raise indices:

= g zg.
The last two equations and the symmetry of g,g imply
Jory gvﬁ — (5aﬁ

for the contraction of contravariant and covariant metric tensors. This is solved by ¢*° being
the normalized co-factor of g,3. For the diagonal matrix (1.26) the result is simply

gaﬂ = gaﬁ' (127)
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Consequently the equations

and, compare (1.18),

0
(0n) = ( , V) , (0% = : (1.28)
cot
-V
hold. It follows that the 4-divergence of a 4-vector
A° -
8aAa:8aAa:L+V-A

0x9

and the d’Alembert (4-dimensional Laplace) operator

are invariants. Sometimes the notation A = V? is used for the (3-dimensional) Laplace
operator.

1.1.5 Lorentz transformations

Let us now construct the Lorentz group. We seek a group of linear transformations

2 =a%a’, (#W:aﬁ) (1.29)

such that the scalar product stays invariant:

B

al o' = awsa’ 2" = 1,3 = 67 wpa”.
As the xgz” are independent, this yields
B8 o __ 65 a __ é o
Ay 0% =07 & aapa® = gsy < a°5Jsa 0’ = gpy -

In matrix notation

AgA =g, (1.30)
where g = (gpa) is given by (1.26),
R N L |
—_(BYy—_]%0 @1 G2 a3
A= (d") a%, a4 d% a% |’ (1.31)
3 .3 .3 3
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and A = (ag*) with a4 = a% is the transpose of the matrix A = (a”,), explicitly

~0 ~1 ~2 ~3 0 1 2 3
B e at a2l at | | a% dy o a@® :
2, 92 02 02 2 4z 9z 92
as” az as as a’s Q3 Q3 Q7

Certain properties of the transformation matrix A can be deduced from (1.30). Taking the
determinant of both sides gives us det(AgA) = det(g) det(A)? = det(g). Since det(g) = —1,
we obtain

det(A) = +1. (1.33)

One distinguishes two classes of transformations. Proper Lorentz transformations are
continuously connected with the identity transformation A = 1. All other Lorentz
transformations are improper. Proper transformations have necessarily det(A) = 1. For
improper Lorentz transformations it is sufficient, but not necessary, to have det(A4) = —1.
For instance A = —1 (space and time inversion) is an improper Lorentz transformation with
det(A) = +1.

Next the number of parameters, needed to specify completely a transformation in the
group, follows from (1.30). Since A and g are 4 X 4 matrices, we have 16 equations for
42 = 16 elements of A. But they are not all independent because of symmetry under
transposition. The off-diagonal equations are identical in pairs. Therefore, we have 4+6 = 10
linearly independent equations for the 16 elements of A. This means that there are siz free
parameters. In other words, the Lorentz group is a six—parameter group.

In the 19th century Lie invented the subsequent procedure to handle these parameters.
Let us now consider only proper Lorentz transformations. To construct A explicitly, Lie
makes the ansatz

where L is a 4 x 4 matrix. The determinant of A is
det(A) = det(el) = eT@), (1.34)
It may be noted that det(A) = +1 implies that L is traceless. Equation (1.30) can be written
gAg=A"". (1.35)

From the definition of L, L and the fact that ¢> = 1 we have (note (gI:g)” — gL"g and
1= (oL L"/nl) (EoZo(—=L)"/nl))

A=el, gAg= els and Al =e L,

Therefore, (1.35) is equivalent to

gLg=—L or (9L)=—gL.
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The matrix gL is thus antisymmetric and it is left as an exercise to show that the general

form of L is: 0 0 o
1° 0 ry Uy

L= l02 _l12 0 123 (136)
It is customary to expand L in terms of six infinitesimal generators:
3
L=- Z(%‘Sz‘ + GK;) and A=e" Zf:l(wisﬁc"'m). (1.37)
i=1
The matrices are defined by
000 O 0O 0 0 0 00 0 0
00 0 O 0 0 0 1 0 0 -1 0
Si=1o 00 1" o 0o ool o1 0 ol (1.38)
0 0 1 0 0 -1 0 0 00 0 0
and
01 0 0 0 010 0 0 0 1
1 0 0 0 0 0 0 O 0 0 0 O
Kr=to 00 ol %271 000 ™ o0 o0 o (1.39)
0 0 0 O 0 0 0 O 1 0 0 0

They satisfy the following Lie algebra commutation relations:
3
[, 55 Z €F Sy, (S, K =Y €F Ky, [K;, K] Z " Sy,
k=1

where the commutator of two matrices is defined by [A, B] = AB — BA. Further ¢, is the
completely antisymmetric Levi-Cevita tensor. Its definition in n—dimensions is

o +1 for (iy,1i9,...,4,) being an even permutation of (1,2,...,n),
ezt —1 for (iy,i9,...,7,) being an odd permutation of (1,2, ...,n), (1.40)
0 otherwise.
To get the physical interpretation of equation (1.37) for A, it is suitable to work out simple

examples. First, let 5 = w; = wy = 0 and w3 = w. Then (this is left as exercise)

1 0 0 0
0 cosw sinw 0
_ ,—wS3 _
A=e |0 —sinw cosw 0|’ (1.41)
0 0 0 1

which describes a rotation by the angle w (in the clockwise sense) around the é;3 axis. Next,

let &= = =0and (; =(. Then

cosh( —sinh(
—sinh{  cosh(
0 0
0 0

A= oSk (1.42)

o = O O
_— o O O
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is obtained, where ( is known as the boost parameter or rapidity. The structure is reminiscent
to a rotation, but with hyperbolic functions instead of circular, basically because of the
relative negative sign between the space and time terms in eqn.(1.24). “Rotations” in the
¥ — 2% planes are boosts and governed by an hyperbolic gemometry, whereas rotations in
the ' — 27 (i # j) planes are governed by the ordinary Euclidean geometry.

Finally, note that the parameters w;, ¢;, (1 = 1,2,3) turn out to be real, as equation
(1.29) implies that the elements of A have to be real. In the next subsection relativistic

kinematics is discussed in more details.

1.1.6 Basic relativistic kinematics

The matrix (1.42) gives the Lorentz boost transformation

7'% = 2° cosh(¢) — x' sinh(¢), (1.43)
o't = —2%sinh(¢) + 2! cosh((), (1.44)
=2 (i=2,3). (1.45)

An interesting feature of equation (1.43) is that for spacelike points, say ' > 2% > 0, a value
(o for the rapidity exists, such that

sign(2'?) = —sign(z?)

for ¢ > (o, i.e. the time-ordering becomes reversed, whereas for timelike points such a
reversal of the time-ordering is impossible. In figure 1.1 this is emphasized by calling the
spacelike (with respect to xo = 0) region elsewhere in contrast to future and past.

Seen from K’, the origin of K (= z' = 0) moves with uniform velocity —v. Using

2’0 = ct’, we obtain (2/! and 2'° corresponding to the origin of K)

v 2V —a%sinh(()
c 20 a%cosh(¢)

The following definition of 3 and ~ are frequently used conventions in the literature.
8= v tanh(¢) and 7= —=—= =cosh({) = 78 = sinh((). (1.46)
c

Hence, the Lorentz transformations (1.43), (1.44) follow in their familiar form

o' = ( a¥ -~ pat), (1.47)
o't =y (=B2° +2t). (1.48)

To find the transformation law of an arbitrary vector A in case of a general relative velocity
v, it is convenient to decompose A into components parallel and perpendicular to 5 = ¥//¢:

A=Alj+ A+ with Al = A
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Then the Lorentz transformation law is simply

A" = A%cosh(¢) — Allsinh(¢) = v( A° — pAl), (1.49)
Al = —A%inh(¢) 4+ Al cosh(¢) = v(—pA° + All), (1.50)
At = At (1.51)

Here I have reserved the notation A and A | for use in connection with covariant vectors:
A= —Al and A} = —A*. We proceed deriving the addition theorem of velocities. Assume
a particle moves with respect to K’ with velocity @ :

Equations (1.47), (1.48) imply
3@t = Ba®) = s (o = ).

Sorting with respect to ! and 2° gives

/1
v (1 4+ 2 2U> vt =cly (Wt ).
c

Using the definition of the velocity in K, # = ¢ '@ 2°, gives

1 /1
wzmzozf;jg. (1.52)
2

C

Along similar lines, we obtain for the two other components

14
W= (i=2,3). (1.53)

v (1+42)

To derive these equations, ¥ was chosen along to the x!'-axis. For general ¢ one only has to
decompose # into its components parallel and perpendicular to the o

i = uld + it
where 0 is the unit vector in ¢ direction, and obtains

| -/ |
e A L — (1.54)

)
R v (141

From this addition theorem of velocities it is obvious that the velocity itself is not part of of
a 4-vector. The relativistic generalization is given in subsection (1.1.9). It is left as exercise
to derive the addition theorem for the rapidity used in equation (1.46). The results of this
problem is central for the interpretation of the rapidities as angles of a hyperbolic geometry.
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1.1.7 Proper time

We now explore in more details Minkowski’s earlier mentioned concept of a 4-dimensional
space-time. The Minkowski space allows to depict world lines of particles. A useful concept
for a particle (or observer) traveling along its world line is its proper time or eigenzeit.
Assume the particle moves with velocity 9(¢), then dz = Edwo holds, and the infinitesimal
invariant along its world line is

(ds)? = (dz°)? — (d7)? = (cdt)® (1 — 7). (1.55)

Each instantaneous rest frame of the particle is an inertial frame. The increment of time
dr in such an instantaneous rest frame is thus a Lorentz invariant quantity which takes the
form

dr =dt\/1 -2 =dty ' =dt/cosh(, (1.56)

where 7 is called proper time. It is the time which a co-moving clock shows. As v(7) > 1 it
follows

to —t; = /72 y(T)dT > 79 — 1. (1.57)

1
This phenomenon is known as time dilatation. A moving clock runs more slowly than a
stationary clock. Note that equation (1.57) applies to general paths of a clock, including
those with acceleration. Relevant is that the time coordinates t, and t; refer to an inertial
system. Two experimental examples are: (i) Time of flight of unstable particles in high
energy scattering experiments, where these particles move at velocities close to the speed of
light. (ii) Explicit verification through travel with atomic clocks on air planes [4, 9].

1.1.8 Plane waves and the relativistic Doppler effect

Let us choose coordinates with respect to an inertial frame K. In complex notation a plane
wave is defined by the equation

W(z) =W (2, &) = Wy expli (K°2° — k)], (1.58)

where Wy = Uy +1i Vj is a complex amplitude. The vector k is called wave vector. It becomes
a 4-vector (k%) by identifying
K =w/c (1.59)

as its zero-component, where w is the angular frequency of the wave. Waves of the form
(1.58) may either propagate in a medium (water, air, shock waves, etc.) or in vacuum (light
waves, particle waves in quantum mechanics). We are interested in the latter case, as the
other defines a preferred inertial frame, namely the one where the medium is at rest. The
phase of the wave is defined by

O(z) = (2", 7) = ka2’ —kTF=wt— k. (1.60)
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When (k%) is a 4-vector, it follows that the phase is a scalar, invariant under Lorentz
transformations
() =K, 2" =kox®=D(z). (1.61)

That this is correct can be seen as follows: For an observer at a fixed position Z (note the
term k Z is then constant) the wave performs a periodic motion with period
2 1
7="22 (1.62)
w v
where v is the frequency. In particular, the phase (and hence the wave) takes identical values
on the two-dimensional hyperplanes perpendicular to k. Namely, let k£ be the unit vector in &
direction, by decomposing & into components parallel and perpendicular to k, & = zl k+ 2+,
the phase becomes
d=wt—kal (1.63)

where k = ]/2] is the length of the vector k. Phases which differ by multiples of 27 give the
same values for the wave W. For example, when we take Vj = 0, the real part of the wave
becomes

W, = Ug cos(wt — k)

and ® = 0, n2m, n = £1,+2, ... describes the wave crests. From (1.63) it follows that the
crests pass by our observer with speed u = u k, where

u:% as for ® = 0 we have x”:%t. (1.64)

Let our observer count the number of wave crests passing by. How has then the wave (1.58)
to be described in another inertial frame K’? An observer in K’ who counts the number of
wave crests, passing through the same space-time point at which our first observer already
counts, must get at same number. After all, the coordinates are just labels and the physics
is the same in all systems. When in frame K the wave takes its maximum at the space-
time point (z%) it must also be at its maximum in K’ at the same space-time point in
appropriately transformed coordinates (2'“). More generally, this is true for every value of
the phase, which hence has to be a scalar.

As (k%) is a 4-vector the transformation law for angular frequency and wave vector is
just a special case of equations (1.49), (1.50) and (1.51)

K'° = kO cosh(¢) — Kl sinh(¢) = ~(k° — gkl (1.65)
K= —kOsinh(¢) + Kl cosh(¢) = ~ (kI — gE®) (1.66)
L=kt (1.67)

where the notation kll and k' is with respect to the relative velocity of the two frames, 7.
These transformation equations for the frequency and the wave vector describe the relativistic
Doppler effect. To illustrate their meaning, let us specialize to the case of a light source,
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which recedes along its wave vector from the observer, i.e. ¥ || k. The equation for the wave

speed (1.64) implies
= k=i ===

C =

= &

and (1.65) becomes

10 __ 0 __ _ . 0_ 10 ﬂ
KO = (K = By = (1= SR =K\ [

, vV 1= v [1-8

Now, ¢ = vA = V)X, where X is the wavelength in K and ) the wavelength in K’
Consequently, we have

or

N =\ 1+0 .
1-p
The wave length of light from the receding source is larger as it is for a source at rest. This
is an example of the red-shift, which is of major importance, for instance when analyzing
spectral lines in astrophysics. Using the method of section 1, a single light signal suffices

now to obtain position and speed of a distant perfectly reflecting mirror.

1.1.9 Relativistic dynamics

On a basic level this section deals with the relativistic generalization of energy, momentum
and their conservation laws. So far we have introduced two units, meter to measure distances
and seconds to measure time. Both are related through a fundamental constant, the speed
of light, so that there is really only one independent unit up to now. In the definition of the
momentum a new, independent dimensional quantity enters, the mass of a particle. This unit
is defined through the gravitational law, which is out of the scope of this article. Ideally, one
would like to defines mass of a body just as multiples of the mass of an elementary particle,
say an electron or proton. However, this has remained too inaccurate. The mass unit has so
far resisted modernization and the mass unit

1 kilogram [kg] = 1000 gram [g]

is still defined through a one kilogram standard object a cylinder of platinum alloy which is
kept at the International Bureau of Weights and Measures at Sévres, France.

Let us consider a point-like particle in its rest-frame and denote its mass there by my.
In any other frame the rest-mass of the particle is still mg, which in this way is defined as
a scalar. It may be noted that most books in particle and nuclear physics simply use m to
denote the rest-mass, whereas many books on special relativity employ the ugly notation
to use m for a mass which is proportional to the energy, i.e. the zero component of the
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energy-momentum vector introduced below. To avoid confusion, we use mg for the rest
mass.

In the non-relativistic limit the momentum is defined by p = mgu. We give up this
relation now and define p’ as part of a relativistic 4-vector (p®). Consider a particle at rest
in frame K. Then the non-relativistic limit is correct, and p'= 0. Assume now that frame
K’ is moving with a small velocity v with respect to K. Then p” = —mgv has to hold
approximately. On the other hand, the transformation laws (1.49),(1.50),(1.51) for vectors
(note 77| 3 = ¥/c) imply

P=v- 6",
where p = 0. In the nonrelativstic limit v 3 — 3 and consistency requires p° = mgc in the
rest frame, so that we get p’ = —mg 7.
Consequently, for a particle moving with velocity @ in frame K

p=moyud (1.68)

is the correct relation between relativistic momentum and velocity. From the invariance of

0\2 =2 _ Jo 2.2
)?—p° = pLp'® = mge?,

p° = +\mie? + (1.69)

follows, which is of course consistent with calculating p° via the Lorentz transformation law

the scalar product, p,p® = (p

(1.49). Tt should be noted that c¢p® has the dimension of an energy, i.e. the relativistic
energy of a particle is

~2

E:cpo:+\/m(2)c4+02132:m002+p—+ o (1.70)

2m0

where the second term is just the non-relativistic kinetic energy T = p’'2/(2my). The first
term shows that (rest) mass and energy can be transformed into one another [3]. In processes
where the mass is conserved we just do not notice it. At this point it may be noted that
special relativity books like [7] tend to use the notation m = cp° as definition of the mass,
whereas in particle and nuclear physics the mass of a particle is its rest mass. Together with
(1.70) the first definition yields the equation E = m c?. Here the second definition is favored,
because it defines the mass of a particle as a invariant scalar and the essence of Einstein’s
equation is captured correctly by
Ey=mgc?,

where Fj is the energy of a massive body (or particle) in its rest frame. The particle and
nuclear physics literature does not use a subscript ¢ and m denotes the rest mass.

Non-relativistic momentum conservation p; + pp = §1 + ¢, where p;, (i = 1,2) are the
momenta of two incoming, and ¢;, (i = 1,2) are the momenta of two outgoing particles,
becomes relativistic energy—momentum conservation:

Pr+r =4 + 4. (1.71)
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Useful formulas in relativistic dynamics are

E
N and (= @ (1.72)
moc Mg c? pY
Proof: (p")? = (1 — 5)m3 + Pm3)/(1 — 5) = ¢} amd 72 = (e*m} = ()",
Further, the contravariant generalization of the velocity vector is given by

o dx®
U=

= yu® with v’ = ¢, (1.73)

compare the definition of the infinitesimal proper time (1.56). The relativistic generalization
of the force is then the 4-vector
dp® au®

f = d’]‘ = My d7‘ s (174)

where the last equality can only be used for particle with non-zero rest mass.

1.2 Maxwell Equations

As before all considerations are in vacuum, as for fields in a medium a preferred reference
system exists. Maxwell’s equations in their standard form in vacuum are

- 185_4%—»

Fos g L0E_dn L
\% wp, V X =5 . J, (1.75)
and .
= - 10B
B= E+-22 . 1.
VB=0, VxE+-20 =0 (1.76)

Here V is the Nabla operator. Note that VE=V" E, ab=a-b etc. throughout the script.
E is the electric field and B the magnetic field in vacuum. When matter gets involved one
introduces the applied electric field D and the applied magnetic field H. Here we follow the
convention of, for instance, Tipler [8] and use the notation magnetic field for the measured
field B , in precisely the same way as it is done for the electric field E, It should be noted
that this is at odds with the notation in the book by Jackson [5], where (historically correct,
but quite confusingly) H is called magnetic field and B magnetic flux or magnetic induction.

Equations (1.75) are the inhomogeneous and equations (1.76) are the homogeneous
Maxwell equations in vacuum.

The charge density p (charge per unit volume) and the current density J (charge passing
through a unit area per time unit) are obviously given once a charge unit is defined through
some measurement prescription. From a theoretical point of view the electrical charge unit
is best defined by the magnitude of the charge of a single electron (fundamental charge unit).
In more conventional units this reads [1]

|ge| = 4.80320420(19) x 1071? [esu] = 1.602176462(63) x 10~ Coulomb [C] (1.77)
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where the errors are given in parenthesis. Definitions of the electrostatic unit [esu] and the
Coulomb [C] through measurement prescriptions are given in elementary physics textbooks
like [8].

The choice of constants in the inhomogeneous Maxwell equations defines units for the
electric and magnetic field. The given conventions 47p and (47/ c)f are customarily used in
connection with Gaussian units, where the charge is defined in electrostatic units (esu).

In the next subsections the concepts of fields and currents are discussed in the relativistic
context and the electromagnetic field equations follow in the last subsection.

1.2.1 Fields and currents

A tensor field is just a tensor function which depends on the coordinates of Minkowski space:
Taﬁ — Taﬂ(x) )

It is called static when there is no time dependence. For instance E (Z) in electrostatics would
be a static vector field in three dimensions. We are here, of course, primarily interested in
contravariant or covariant fields in four dimensions, like vector fields A%(x).

Suppose n electric charge units are contained it a small volume v, such that we can talk
about the position & of this volume. The corresponding electrical charge density at the
position of that volume is then just p = n/v and the electrical current is defined as the
charge that passes per unit time through a surface element of such a volume. We demand
now that the electric charge density p and the electric current J form a 4-vector:

oy _ [P
o=(%)
Here, the factor ¢ is introduced by dimensional reasons and we have suppressed the space-
time dependence, i.e. J* = J%(x) forms a vector field. It is left as a problem to write down

the 4-current for a point particle of elementary charge qe.
The continuity equation takes the simple, covariant form

0aJ* =0. (1.78)
Finally, the charge of a particle in its rest frame is an invariant:

cqp = JuJ”.

1.2.2 The inhomogeneous Maxwell equations

The inhomogeneous Maxwell equations are obtained by writing down the simplest covariant
equation which yields a 4-vector as first order derivatives of six fields. From undergraduate
E&M we remember the electric and magnetic fields, E and B , as the six central fields of
electrodynamics. We now like to describe them in covariant form. A 4-vector is unsuitable
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as we like to describe six quantities £E*, EY, E* and B*, BY, B*. Next, we may try a rank
two tensor F*?. Then we have 4 x 4 = 16 quantities at our disposal. These are now
too many. But, one may observe that an symmetric tensor stays symmetric under Lorentz
transformation and an antisymmetric tensor stays antisymmetric. Hence, instead of looking
at the full second rank tensor one has to consider its symmetric and antisymmetric parts
separately.

By requesting F*? to be antisymmetric,

B _F50<7 (1.79)
this number is reduced to precisely six. The diagonal elements do now vanish,
FOO — Fll — F22 :F33 =0.

The other elements follow through (1.79) from F*? with a < 3. As desired, this gives
(16 — 4)/2 = 6 independent elements to start with.
Up to an over—all factor, which is chosen by convention, the only way to obtain a 4-vector

through differentiation of F*% is

4
iy £ (1.80)

C

O, FP =

This is the inhomogeneous Maxwell equation in covariant form. Note that it determines
the physical dimensions of the electric fields, the factor ¢ !'47 on the right-hand side
corresponds to Gaussian units. The continuity equation (1.78) is a simple consequence
of the inhomogeneous Maxwell equation

4
%aﬁﬂ = 050, F% =0

because the contraction with the symmetric tensor (930,) with the antisymmetric tensor
F°8 is zero.

Let us choose f = 0,1,2,3 respectively, comparison of equation (1.80) with the
inhomogeneous Maxwell equations in their standard form (1.75) yields

0 —E° —EY —FE*
E* 0 —-B* BDBY

af)
r* —-BY B* 0
Or, in components
FP=F" and F7=-) ¢*B* & B* = -3 DID IRl (1.82)
k i g

Next, Fog = garygps F?° implies:

Fyy=—F" Fpy=F"=0, F;, =F"=0, and Fj=F".
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Consequently,
0 E* EY E*
-E* 0 —-B* BY
(Faﬂ) - _Ey Bz 0 _Bx
—-FE* —-BY B* 0

(1.83)

1.2.3 Four-potential and homogeneous Maxwell equations

We remember that the electromagnetic fields may be written as derivatives of appropriate
potentials. The only covariant option are terms like 9*A4°. To make F*? antisymmetric, we
have to subtract 9°A°:

FoP = 9A° — 9P A~ (1.84)

It is amazing to note that the homogeneous Maxwell equations follow now for free from
(1.84). The dual electromagnetic tensor is defined

1
Fpeld — EEQWFW (1.85)

and it holds
9, F* = 0. (1.86)

Proof: 1
O FP = 5 (e77°0,0, A5 — €2°0,05A,) = 0.

This first term is zero due to (1.21), because €*#7 is antisymmetric in («, ), whereas the
derivative 0,0, is symmetric in (o, ). Similarly the other term is zero. The homogeneous
Maxwell equation is related to the fact that the right-hand side of equation (1.84) expresses
six fields in terms of a single 4-vector. An equivalent way to write it is the equation

OF + P + O F =0 . (1.87)

The proof is left as an exercise to the reader.
Let us mention that the homogeneous Maxwell equation (1.86) or (1.87), and hence our
demand that the field can be written in the form (1.84), excludes magnetic monopoles.
The elements of the dual tensor may be calculated from their definition (1.85). For

example,
*FOQ — €02135113 — —F13 — _RY
Y

where the first step exploits the anti-symmetries €923! = —¢%23 and F3; = —F}3. Calculating
six components, and exploiting antisymmetry of *F*’, we arrive at

0 —-B* —-BY —-DB*

B* 0 £ —EY
By L7 0 E*
B EY —FE* 0

(*F*P) = (1.88)
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The homogeneous Maxwell equations in their form (1.76) provide a non—trivial consistency
check for (1.86), which is of course passed. It may be noted that, in contrast to the
inhomogeneous equations, the homogeneous equations determine the relations with the E
and B fields only up to an over-all + sign, because there is no current on the right-hand
side.

A notable observation is that equation (1.84) does not determine the potential uniquely.

Under the transformation
A% = A = AY 4+ 0%, (1.89)

where ¢ = 1)(x) is an arbitrary scalar function, the electromagnetic field tensor is invariant:
F'*8 = o8 as follows immediately from 9%9%¢ — 3°9%) = 0. The transformations (1.89)
are called gauge transformation'. The choice of a convenient gauge is at the heart of many
application.

1.2.4 Lorentz transformation for the electric and magnetic fields

The electric E and magnetic B fields are not components of a Lorentz four-vector, but part
of the rank two the electromagnetic field (F*?) given by (1.81). As for any Lorentz tensor,
we immediately know its behavior under Lorentz transformation

Fof = a® a7 (1.90)

Using the explicit form (1.42) of A = (a%) for boosts and (1.81), it is left as an exercise for
the reader to derive the transformation laws

B = (B+3x8)- 217 (7). (1.91)
and )
E’:y(é—ﬁxﬁ)—ﬂrlﬁ(ﬁé). (1.92)

1.2.5 Lorentz force

Relativistic dynamics of a point particle (more generally any mass distribution) gets related
to the theory of electromagnetic fields, because an electromagnetic field causes a change of
the 4-momentum of a charged particle. On a deeper level this phenomenon is related to the
conservation of energy and momentum and the fact that an electromagnetic carries energy as
well as momentum. Here we are content with finding the Lorentz covariant form, assuming
we know already that such the approximate relationship.

We consider a charged point particle in an electromagnetic field F*°. Here external
means from sources other than the point particle itself and that the influence of the point

'In quantum field theory these are the gauge transformations of 2. kind. Gauge transformations of 1. kind
transform fields by a constant phase, whereas for gauge transformation of the 2. kind a space—time dependent
function is encountered.
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particle on these other sources (possibly causing a change of the field F*%) is neglected.
The infinitesimal change of the 4-momentum of a point point particle is dp® and assumed
to be proportional to (i) its charge ¢ and (ii) the external electromagnetic field F**. This
means, we have to contract F*? with some infinitesimal covariant vector to get dp®. The
simplest choice is dzg, what means that the amount of 4-momentum change is assumed to be
proportional to the space-time length at which the particle experiences the electromagnetic
field. Hence, we have determined dp® up to a proportionality constant, which depends on the
choice of units. Gaussian units are defined by choosing ¢! for this proportionality constant
and we have

dp® = i% FB dz, (1.93)

It is a consequence of energy conservation, in this context known as Lenz’s law, that the
force between charges of equal sign has to be repulsive. This corresponds to the plus sign
and we arrive at

dp* = % FP dxg. (1.94)

Experimental measurements are of course in agreement with this sign. But the remarkable
point is that energy conservation and the general structure of the theory already imply
that the force between charges of equal sign has to be repulsive. Therefore, despite the
similarity of the Coulomb’s inverse square force law with Newton’s law it impossible to build
a theory of gravity along the lines of this chapter, i.e. to use the 4-momentum p® as source
in the inhomogeneous equation (1.80). The resulting force would necessarily be repulsive.
Experiments show also that positive and negative electric charges exist and deeper insight
about their origin comes from the relativistic Lagrange formulation, which ultimately has to
include Dirac’s equation for electrons and leads then to Quantum Electrodynamics.
Taking the derivative with respect to the proper time, we obtain the 4-force acting on a
charged particle, called Lorentz force,
a
o= ‘ilpT = %F@ﬁUﬂ. (1.95)
As in equation (1.74) f¢ = mydU®/dr holds for non-zero rest mass and the definition of the
contravariant velocity is given by equation (1.73).
Using the representation (1.81) of the electromagnetic field the time component of the
relativistic Lorentz force, which describes the change in energy, is

[ (E0) . (1.96)

To get the space component of the Lorentz force we use besides (1.81) equation (1.82) which
give the equality

g3 PRENE:
e LU= = L Y B
]:

J=1k=1
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The space components combine into the well-known equation

— —

f:qyﬁ—l—%UxB (1.97)

where our derivation reveals that the relativistic velocity (1.73) of the charge ¢ and not its
velocity ¢ enters the force equation. This allows, for instance, correct force calculations for
fast flying electrons in a magnetic field. The equation (1.97) for f may now be used to define
a measurement prescription for an electric charge unit.



Bibliography

[1] P.J. Mohr and B.N. Taylor, CODATA Recommended Values of the Fundamental
Physical Constants: 1998, J. of Physical and Chemical Reference Data, to appear.
See the website of the National Institute of Standards and Technology (NIST) at
physics.nist.gov/constants.

[2] A. Einstein, Zur Elektrodynamik bewegter Korper, Annalen der Physik 17 (1905) 891—
921.

[3] A. Einstein, Ist die Trdgheit eines Korpers von seinem Energieinhalt abhdngig?, Annalen
der Physik 18 (1906) 639-641.

[4] C. Hefele and R. Keating, Science 177 (1972) 166, 168.

[5] J.D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, 1975.
[6] B.W. Petley, Nature 303 (1983) 373.

[7] W. Rindler, Introduction to Special Relativity, Clarendon Press, Oxford 1982.

[8] P.A. Tipler, Physics for Scientists and Engineers, Worth Publishers, 1995.

9] R.F.C. Vessot and M.W. Levine, GRG 10 (1979) 181.



