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Chapter 1

A self-contained summary of the theory of special relativity is given, which provides the

space-time frame for classical electrodynamics. Historically [2] special relativity emerged

out of electromagnetism. Nowadays, is deserves to be emphasized that special relativity

restricts severely the possibilities for electromagnetic equations.

1.1 Special Relativity

Let us deal with space and time in vacuum. The conventional time unit is one

second [s]. (1.1)

Here, and in the following abbreviations for units are placed in brackets [ ]. For a long time

period the second was defined in terms of the rotation of the earth as 1
60
× 1

60
× 1

24
of the mean

solar day. Nowadays most accurate time measurements rely on atomic clocks. They work by

tuning a electric frequency into resonance with some atomic transition. Consequently, the

second has been re–defined, such that the frequency of the light between the two hyperfine

levels of the ground state of the cesium 132Cs atom is now exactly 9,192,631,770 cycles per

second.

Special relativity is founded on two basic postulates:

1. Galilee invariance: The laws of nature are independent of any uniform, translational

motion of the reference frame.

This postulate gives rise to a triple infinite set of reference frames moving with constant

velocities relative to one another. They are called inertial frames. For a freely moving

body, i.e. a body which is not acted upon by an external force, inertial systems exist. The

differential equations which describe physical laws take the same form in all inertial frames.

This Galilee invariance was known long before Einstein.

2. The speed c of light in empty space is independent of the motion of its source.

1



CHAPTER 1. 2

The second Postulate was introduced by Einstein 1905 [2]. It implies that c takes the same

constant value in all inertial frames. Transformations between inertial frames are implied

which have far reaching physical consequences.

The distance unit

1 meter [m] = 100 centimeters [cm] (1.2)

was originally defined by two scratches on a bar made of platinum–iridium alloy kept at the

International Bureau of Weights and Measures in Sèvres, France. As measurements of the

speed of light have become increasingly accurate, it has become most appropriate to exploit

Postulate 2 to define the distance unit. The standard meter is now defined [6] as the distance

traveled by light in empty space during the time of 1/299,792,458 [s]. This makes the speed

of light exactly

c = 299, 792, 458 [m/s]. (1.3)

1.1.1 Natural Units

The units for second (1.1 and meter (1.2) are not independent, as the speed of light is an

universal constant. This allows to define natural units, which are frequently used in nuclear,

particle and astro physics. They define

c = 1 (1.4)

as a dimensionless constant, and

1 [s] = 299, 792, 458 [m]

holds. The advantage of natural units is that factors of c disappear in calculations. The

disadvantage is that, for converting back to conventional units, the appropriate factors have

to be recovered by dimensional analysis. For instance, if time is given in seconds x = t in

natural units converts to x = ct with x in meters and c given by (1.3).

1.1.2 Definition of distances and synchronization of clocks

The introduced concepts of Galilee invariance and of a constant speed of light are not pure

mathematics, but relate to physical measurements. Therefore, I discuss briefly how to employ

them to reduce measurements of spatial distances to time measurements. Let us consider an

inertial frame K with coordinates (t, ~x). We like to place observers at rest at different places

~x in K. The observers are equipped with clocks of identical making, to define the time t at

~x. The origin ~x = 0, in other notation (t,~0), of K is defined by placing observer O0 and his

clock there. We like to place another observer O1 at ~x1 to define (t, ~x1). How can O1 know

to be at ~x1? By using a mirror he can reflect light flashed by observer O0 at him. Observer

O0 may measure the polar and azimuthal angles (θ, φ) at which he emits the light and

|~x1| = c4t/2 ,
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where 4t is the time light needs to travel to O1 and back. This determines ~x1 and he can

signal this information to O1. By repeating the measurement, he can make sure that O1 is

not moving with respect to K. For an idealized, force free environment the observers will

then never start moving with respect to one another. Next O1 needs to synchronize his clock.

This may be done as follows: Observer O0 flashes his instant time t0 at O1, and O1 puts his

clock to

t1 = t0 + |~x1|/c

at the instant receiving the signal. In this way (t, ~x1) is operationally given. If O0 flashes

again his instant time t01 over to O1, the clock of O1 will show time t11 = t01 + |~x1|/c at the

instant of receiving the signal. In the same way the time t can be defined at any desired

point ~x in K.

Now we consider an inertial frame K ′ with coordinates (t′, ~x′), moving with constant

velocity ~v with respect to K. The origin of K ′ is defined through a third observer O′
0. What

does it mean that O′
0 moves with constant velocity ~v with respect to O0? At times te01 and

te02 observer O0 may flash light signals (the superscript e stands for “emit”) at O′
0, which are

reflected and arrive back after time intervals 4t01 and 4t02. From principle 2 it follows that

the reflected light needs the same time (measured by O0 in K) to travel from O′
0 to O0, as

the light needed to travel from O0 to O′
0. Hence, O0 concludes that O′

0 received the signal at

t0i = te0i +4t0i/2, (i = 1, 2) (1.5)

in the O0 time. This extremely simple equation does look quite complicated for non-

relativistic physics, because the speed on the return path would then be distinct from that

on the arrival path (consider for instance elastic scattering of a very light particle on a very

heavy surface). The constant velocity of light implies that relativistic distance measurements

are simpler than such non-relativistic measurements. For observer O0 the positions ~x01 and

~x02 are now defined through the angles (θ0i, φ0i) and

|~x0i| = 4t0i c/2, (i = 1, 2) . (1.6)

For the assumed force free environment observer O0 can conclude that O′
0 moves with respect

to him with uniform velocity

~v = (~x02 − ~x01)/(t02 − t01) . (1.7)

O0 may repeat the procedure at later time t0i, i = 3, 4, · · · to check that O′
o moves indeed

with uniform velocity.

Similarly, observer O′
0 will find out that O0 move with velocity ~v ′ = −~v. According to

principle 1, observers in K ′ can now go ahead to define t′ for any point ~x ′ in K ′, and (t′, ~x′)

is operationally defined. Let us further discuss the motion of O′
0 as observed by O0. The

equation of motion for the origin of K ′ is

~x (~x
′
= 0) = ~x0 + ~v t, (1.8)
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with ~x0 = ~x01 − ~v t01. The equation for ~x0 expresses the fact that for t = t01 observer O′
0 is

at ~x01. Shifting his space convention by a constant vector, observer O0 can achieve ~x0 = 0,

such that equation (1.8) becomes

~x (~x
′
= 0) = ~v t.

Similarly, observer O′
0 may choose his space convention such that

~x
′
(~x = 0) = −~v t′

holds.

1.1.3 Lorentz invariance and Minkowski space

Having defined time and space operationally, let us focus on a more abstract discussion.

We consider the two inertial frames with uniform relative motion ~v: K with coordinates

(t, ~x) and K ′ with coordinates (t′, ~x ′). We demand that at time t = t′ = 0 their two origins

coincide. This can be achieved, as we have just seen. Now, imagine a spherical shell of

radiation originating at time t = 0 from ~x = ~x ′ = 0. The propagation of the wavefront is

described by

c2t2 − x2 − y2 − z2 = 0 in K, (1.9)

and by

c2t′ 2 − x′ 2 − y′ 2 − z′ 2 = 0 in K ′. (1.10)

We define 4-vectors (α = 0, 1, 2, 3) by

(xα) =
(
ct
~x

)
and (xα) = (ct, −~x) . (1.11)

By reasons explained in the next section the components xα are called contravariant and the

components xα covariant. In matrix notation the contravariant 4-vector (xα) is represented

by a column and the covariant 4-vector (xα) as a row.

The Einstein summation convention is defined by

xαx
α =

3∑
α=0

xαx
α, (1.12)

and will be employed throughout this script. Equations (1.9) and (1.10) read then

xαx
α = x′αx

′α = 0. (Homogeneous) Lorentz transformations are defined as the group of

transformations which leave the distance

s2 = xαx
α invariant. (1.13)

If the initial condition t′ = 0 and ~x
′
(~x = 0) = ~x(~x

′
) = 0 for t = 0 is replaced by and arbitrary

one, the equation (xα−yα)(xα−yα) = (x′α−y′α)(x′α−y′α) still holds. Inhomogeneous Lorentz

or Poincaré transformations are defined as the group of transformations which leave

s2 = (xα − yα)(xα − yα) invariant. (1.14)
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In contrast to the Lorentz transformations the Poincaré transformations include invariance

under translations

xα → xα + aα and yα → yα + aα

where aα is a constant vector. A fruitful concept is that of a 4-dimensional space-time,

called Minkowski space. Equation (1.14) gives the invariant metric of this space. Compared

to the norm of 4-dimensional Euclidean space, the crucial difference is the relative minus

sign between time and space components. The light cone of a 4-vector xα
0 is defined as the

set of vectors xα which satisfy

(x− x0)
2 = (xα − x0α) (xα − xα

0 ) = 0.

The light cone separates events which are timelike and spacelike with respect to xα
0 , namely

(x− x0)
2 > 0 for timelike

and

(x− x0)
2 < 0 for spacelike.

We shall see later, compare equation (1.43), that the time ordering of spacelike points is

distinct in different inertial frames, whereas it is the same for timelike points. For the choice

xα
0 = 0 this Minkowski space situation is depicted in figure 1.1. On the abscissa we have the

projection of the three dimensional Euclidean space on r = |~x|. The regions future and past

of this figure are the timelike points of x0 = 0, whereas elsewhere are the spacelike points.

To understand special relativity in some depth, we have to explore Lorentz and Poincaré

transformations in some details. Before we come to this, it is convenient to introduce some

relevant calculus.

1.1.4 Vector and tensor notation

Let us define a general transformation x→ x′ through

x′α = x′α(x) = x′α
(
x0, x1, x2, x3

)
, α = 0, 1, 2, 3. (1.15)

This means, x′α is a function of four variables and, when it is needed, this function is assumed

to be sufficiently often differentiable with respect to each of its arguments. In the following

we consider the transformation properties of various quantities (scalars, vectors and tensors)

under x→ x′.

A scalar is a single quantity whose value is not changed under the transformation (1.15).

A 4-vector Aα, (α = 0, 1, 2, 3) is said contravariant if its components transform according

to

A′α =
∂x′α

∂xβ
Aβ. (1.16)
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B

Figure 1.1: Minkowski space: Seen from the spacetime point A at the origin, the spacetime
points in the forward light cone are in the future, those in the backward light cone are in
the past and the spacelike points are “elsewhere”, because their time-ordering depends on
the inertial frame chosen. Paths of two clocks which separate at the origin (the straight line
one stays at rest) and merge again at a future space-time point B are also indicated. For
the paths shown the clock moved along the curved path will, at B, show an elapsed time of
about 70% of the elapsed time shown by the other clock (i.e. the one which stays at rest).

An example is Aα = dxα, where (1.16) reduces to the well–known rule for the differential of

a function of several variable (fα(x) = x′α(x)):

dx′α =
∂x′α

∂xβ
dxβ.

Remark: In this general framework the vector xα is not always contravariant. When

aα
β =

∂x′α

∂xβ

defines a linear transformation with constant (i.e. space-time independent) coefficients aα
β,

the vector xα itself is contravariant. In the present framework we are only interested in that

case (the other leads into general relativity).

A 4-vector is said covariant when it transforms like

B′
α =

∂xβ

∂x′α
Bβ. (1.17)

An example is

Bα = ∂α =
∂

∂xα
, (1.18)
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because of
∂

∂x′α
=
∂xβ

∂x′α
∂

∂xβ
.

The inner or scalar product of two vectors is defined as the product of the components of a

covariant and a contravariant vector:

B · A = BαA
α. (1.19)

With this definition the scalar product is an invariant under the transformation (1.15). This

follows from (1.16) and (1.17):

B′ · A′ =
∂xβ

∂x′α
∂x′α

∂xγ
BβA

γ =
∂xβ

∂xγ
BβA

γ = δβ
γBβA

γ = B · A.

Here the Kronecker delta is defined by:

δα
β = δ β

α =
{

1 for α = β,
0 for α 6= β.

(1.20)

Vectors are rank one tensors. Tensors of general rank k are quantities with k indices, like

for instance

Tα1α2...
...αi...αk

.

The convention is that the upper indices transform contravariant and the lower transform

covariant. For instance, a contravariant tensor of rank two Fαβ consists of 16 quantities that

transform according to

F ′αβ =
∂x′α

∂xγ

∂x′β

∂xδ
F γδ.

A covariant tensor of rank two Gαβ transforms as

G′
αβ =

∂xγ

∂x′α
∂xδ

∂x′β
Gγδ.

The inner product or contraction with respect to any pair of indices, either on the same

tensor or between different tensors, is defined in analogy with (1.19). One index has to be

contravariant and the other covariant.

A tensor S...α...β... is the symmetric in α and β when

S...α...β... = S...β...α....

A tensor A...α...β... is the antisymmetric in α and β when

A...α...β... = −A...β...α....

Let Sαβ be a symmetric and Aαβ be an antisymmetric tensor. It holds

S...α...β...A...α...β... = 0. (1.21)
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Proof:

S...α...β...A...α...β... = −S...β...α...A...β...α... = −S...α...β...A...α...β...,

and consequently zero. The first step exploits symmetry and antisymmetry, and the second

step renames the summation indices. Every tensor can be written as a sum of its symmetric

and antisymmetric parts

T ...α...β... = T ...α...β...
S + T ...α...β...

A (1.22)

by simply defining

T ...α...β...
S =

1

2

(
T ...α...β... + T ...β...α...

)
and T ...α...β...

A =
1

2

(
T ...α...β... − T ...β...α...

)
. (1.23)

So far the results and definitions are general. We now specialize to Poincaré transforma-

tions. The specific geometry of the space–time of special relativity is defined by the invariant

distance s2, see eqn.(1.14). In differential form, the infinitesimal interval ds that defines the

norm of our space is

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (1.24)

Here we have used superscripts on the coordinates in accordance to our insight that dxα is

a contravariant vector. Introducing a metric tensor gαβ we re–write equation (1.24) as

(ds)2 = gαβ dx
αdxβ. (1.25)

Comparing (1.24) and (1.25) we see that for special relativity gαβ is diagonal:

g00 = 1, g11 = g22 = g33 = −1 and gαβ = 0 for α 6= β. (1.26)

Comparing (1.25) with the invariant scalar product (1.19), we conclude that

xα = gαβ x
β.

The covariant metric tensor lowers the indices, i.e. transforms a contravariant into a covariant

vector. Correspondingly the contravariant metric tensor gαβ is defined to raise indices:

xα = gαβ xβ.

The last two equations and the symmetry of gαβ imply

gαγ g
γβ = δ β

α

for the contraction of contravariant and covariant metric tensors. This is solved by gαβ being

the normalized co–factor of gαβ. For the diagonal matrix (1.26) the result is simply

gαβ = gαβ. (1.27)
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Consequently the equations

Aα =
(
A0

~A

)
, Aα = (A0,− ~A)

and, compare (1.18),

(∂α) =

(
∂

c∂t
,∇
)
, (∂α) =


∂

c∂t

−∇

 . (1.28)

hold. It follows that the 4-divergence of a 4-vector

∂αAα = ∂αA
α =

∂A0

∂x0
+∇ · ~A

and the d’Alembert (4-dimensional Laplace) operator

= ∂α∂
α =

∂2

∂x02 −∇
2

are invariants. Sometimes the notation 4 = ∇2 is used for the (3-dimensional) Laplace

operator.

1.1.5 Lorentz transformations

Let us now construct the Lorentz group. We seek a group of linear transformations

x′α = aα
β x

β, (⇒ ∂x′α

∂xβ
= aα

β) (1.29)

such that the scalar product stays invariant:

x′α x
′α = a β

α xβ a
α
γx

γ = xα x
α = δβ

γxβx
γ.

As the xβx
γ are independent, this yields

a β
α aα

γ = δβ
γ ⇔ aαβ a

α
γ = gβγ ⇔ aδ

β gδα a
α
γ = gβγ .

In matrix notation

ÃgA = g, (1.30)

where g = (gβα) is given by (1.26),

A = (aβ
α) =


a0

0 a0
1 a0

2 a0
3

a1
0 a1

1 a1
2 a1

3

a2
0 a2

1 a2
2 a2

3

a3
0 a3

1 a3
2 a3

3

 , (1.31)
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and Ã = (ã α
β ) with ã α

β = aα
β is the transpose of the matrix A = (aβ

α), explicitly

Ã = (ã α
β ) =


ã 0

0 ã 1
0 ã 2

0 ã 3
0

ã 0
1 ã 1

1 ã 2
1 ã 3

1

ã 0
2 ã 1

2 ã 2
2 ã 3

2

ã 0
3 ã 1

3 ã 2
3 ã 3

3

 =


a0

0 a1
0 a2

0 a3
0

a0
1 a1

1 a2
1 a3

1

a0
2 a1

2 a2
2 a3

2

a0
3 a1

3 a2
3 a3

3

 . (1.32)

Certain properties of the transformation matrix A can be deduced from (1.30). Taking the

determinant of both sides gives us det(ÃgA) = det(g) det(A)2 = det(g). Since det(g) = −1,

we obtain

det(A) = ±1. (1.33)

One distinguishes two classes of transformations. Proper Lorentz transformations are

continuously connected with the identity transformation A = 1. All other Lorentz

transformations are improper. Proper transformations have necessarily det(A) = 1. For

improper Lorentz transformations it is sufficient, but not necessary, to have det(A) = −1.

For instance A = −1 (space and time inversion) is an improper Lorentz transformation with

det(A) = +1.

Next the number of parameters, needed to specify completely a transformation in the

group, follows from (1.30). Since A and g are 4 × 4 matrices, we have 16 equations for

42 = 16 elements of A. But they are not all independent because of symmetry under

transposition. The off-diagonal equations are identical in pairs. Therefore, we have 4+6 = 10

linearly independent equations for the 16 elements of A. This means that there are six free

parameters. In other words, the Lorentz group is a six–parameter group.

In the 19th century Lie invented the subsequent procedure to handle these parameters.

Let us now consider only proper Lorentz transformations. To construct A explicitly, Lie

makes the ansatz

A = eL =
∞∑

n=0

Ln

n!
,

where L is a 4× 4 matrix. The determinant of A is

det(A) = det(eL) = eTr(L). (1.34)

It may be noted that det(A) = +1 implies that L is traceless. Equation (1.30) can be written

gÃg = A−1. (1.35)

From the definition of L, L̃ and the fact that g2 = 1 we have (note (gL̃g)n = gL̃ng and

1 = (
∑∞

n=0 L
n/n!) (

∑∞
n=0(−L)n/n!))

Ã = eL̃, gÃg = egL̃g and A−1 = e−L .

Therefore, (1.35) is equivalent to

gL̃g = −L or ˜(gL) = −gL.
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The matrix gL is thus antisymmetric and it is left as an exercise to show that the general

form of L is:

L =


0 l01 l02 l03
l01 0 l12 l13
l02 −l12 0 l23
l03 −l13 −l23 0

 . (1.36)

It is customary to expand L in terms of six infinitesimal generators:

L = −
3∑

i=1

(ωiSi + ζiKi) and A = e−
∑3

i=1
(ωiSi+ζiKi). (1.37)

The matrices are defined by

S1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , S2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , S3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (1.38)

and

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , (1.39)

They satisfy the following Lie algebra commutation relations:

[Si, Sj] =
3∑

k=1

εijkSk, [Si, Kj] =
3∑

k=1

εijkKk, [Ki, Kj] = −
3∑

k=1

εijkSk,

where the commutator of two matrices is defined by [A,B] = AB − BA. Further εijk is the

completely antisymmetric Levi–Cevita tensor. Its definition in n–dimensions is

εi1i2...in =


+1 for (i1, i2, ..., in) being an even permutation of (1, 2, ..., n),
−1 for (i1, i2, ..., in) being an odd permutation of (1, 2, ..., n),
0 otherwise.

(1.40)

To get the physical interpretation of equation (1.37) for A, it is suitable to work out simple

examples. First, let ~ζ = ω1 = ω2 = 0 and ω3 = ω. Then (this is left as exercise)

A = e−ω S3 =


1 0 0 0
0 cosω sinω 0
0 − sinω cosω 0
0 0 0 1

 , (1.41)

which describes a rotation by the angle ω (in the clockwise sense) around the ê3 axis. Next,

let ~ω = ζ2 = ζ3 = 0 and ζ1 = ζ. Then

A = e−ζ K1 =


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

 (1.42)
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is obtained, where ζ is known as the boost parameter or rapidity. The structure is reminiscent

to a rotation, but with hyperbolic functions instead of circular, basically because of the

relative negative sign between the space and time terms in eqn.(1.24). “Rotations” in the

x0 − xi planes are boosts and governed by an hyperbolic gemometry, whereas rotations in

the xi − xj (i 6= j) planes are governed by the ordinary Euclidean geometry.

Finally, note that the parameters ωi, ζi, (i = 1, 2, 3) turn out to be real, as equation

(1.29) implies that the elements of A have to be real. In the next subsection relativistic

kinematics is discussed in more details.

1.1.6 Basic relativistic kinematics

The matrix (1.42) gives the Lorentz boost transformation

x′ 0 = x0 cosh(ζ)− x1 sinh(ζ), (1.43)

x′ 1 = −x0 sinh(ζ) + x1 cosh(ζ), (1.44)

x′ i = xi, (i = 2, 3). (1.45)

An interesting feature of equation (1.43) is that for spacelike points, say x1 > x0 > 0, a value

ζ0 for the rapidity exists, such that

sign(x′ 0) = −sign(x0)

for ζ > ζ0, i.e. the time-ordering becomes reversed, whereas for timelike points such a

reversal of the time-ordering is impossible. In figure 1.1 this is emphasized by calling the

spacelike (with respect to x0 = 0) region elsewhere in contrast to future and past.

Seen from K ′, the origin of K (⇒ x1 = 0) moves with uniform velocity −v. Using

x′ 0 = ct′, we obtain (x′ 1 and x′ 0 corresponding to the origin of K)

−v
c

=
x′1

x′0
=
−x0 sinh(ζ)

x0 cosh(ζ)
.

The following definition of β and γ are frequently used conventions in the literature.

β =
v

c
= tanh(ζ) and γ =

1√
1− β2

= cosh(ζ) ⇒ γβ = sinh(ζ). (1.46)

Hence, the Lorentz transformations (1.43), (1.44) follow in their familiar form

x′ 0 = γ ( x0 − βx1), (1.47)

x′ 1 = γ (−βx0 + x1). (1.48)

To find the transformation law of an arbitrary vector ~A in case of a general relative velocity

~v, it is convenient to decompose ~A into components parallel and perpendicular to ~β = ~v/c:

~A = A‖β̂ + ~A⊥ with A‖ = β̂ ~A.
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Then the Lorentz transformation law is simply

A′ 0 = A0 cosh(ζ)− A‖ sinh(ζ) = γ( A0 − βA‖), (1.49)

A′ ‖ = −A0 sinh(ζ) + A‖ cosh(ζ) = γ(−βA0 + A‖), (1.50)

~A′ ⊥ = ~A⊥. (1.51)

Here I have reserved the notation A‖ and ~A⊥ for use in connection with covariant vectors:

A‖ = −A‖ and ~A⊥ = − ~A⊥. We proceed deriving the addition theorem of velocities. Assume

a particle moves with respect to K ′ with velocity ~u
′
:

x′ i = c−1u′ ix′ 0.

Equations (1.47), (1.48) imply

γ (x1 − βx0) = c−1u′ 1γ (x0 − βx1).

Sorting with respect to x1 and x0 gives

γ

(
1 +

u′ 1v

c2

)
x1 = c−1γ (u′1 + v)x0 .

Using the definition of the velocity in K, ~x = c−1~u x0, gives

u1 = c
x1

x0
=

u′1 + v

1 + u′1v
c2

. (1.52)

Along similar lines, we obtain for the two other components

ui =
u′i

γ
(
1 + u′1v

c2

) , (i = 2, 3). (1.53)

To derive these equations, ~v was chosen along to the x1-axis. For general ~v one only has to

decompose ~u into its components parallel and perpendicular to the ~v

~u = u‖v̂ + ~u⊥ ,

where v̂ is the unit vector in ~v direction, and obtains

u‖ =
u′ ‖ + v

1 + u′ ‖v
c2

and ~u⊥ =
~u

′⊥

γ
(
1 + u′ ‖v

c2

) . (1.54)

From this addition theorem of velocities it is obvious that the velocity itself is not part of of

a 4-vector. The relativistic generalization is given in subsection (1.1.9). It is left as exercise

to derive the addition theorem for the rapidity used in equation (1.46). The results of this

problem is central for the interpretation of the rapidities as angles of a hyperbolic geometry.
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1.1.7 Proper time

We now explore in more details Minkowski’s earlier mentioned concept of a 4-dimensional

space-time. The Minkowski space allows to depict world lines of particles. A useful concept

for a particle (or observer) traveling along its world line is its proper time or eigenzeit.

Assume the particle moves with velocity ~v(t), then d~x = ~βdx0 holds, and the infinitesimal

invariant along its world line is

(ds)2 = (dx0)2 − (d~x)2 = (c dt)2 (1− β2) . (1.55)

Each instantaneous rest frame of the particle is an inertial frame. The increment of time

dτ in such an instantaneous rest frame is thus a Lorentz invariant quantity which takes the

form

dτ = dt
√

1− β2 = dt γ−1 = dt/ cosh ζ , (1.56)

where τ is called proper time. It is the time which a co-moving clock shows. As γ(τ) ≥ 1 it

follows

t2 − t1 =
∫ τ2

τ1
γ(τ)dτ ≥ τ2 − τ1. (1.57)

This phenomenon is known as time dilatation. A moving clock runs more slowly than a

stationary clock. Note that equation (1.57) applies to general paths of a clock, including

those with acceleration. Relevant is that the time coordinates t2 and t1 refer to an inertial

system. Two experimental examples are: (i) Time of flight of unstable particles in high

energy scattering experiments, where these particles move at velocities close to the speed of

light. (ii) Explicit verification through travel with atomic clocks on air planes [4, 9].

1.1.8 Plane waves and the relativistic Doppler effect

Let us choose coordinates with respect to an inertial frame K. In complex notation a plane

wave is defined by the equation

W (x) = W (x0, ~x) = W0 exp[ i (k0 x0 − ~k ~x) ] , (1.58)

where W0 = U0 + i V0 is a complex amplitude. The vector ~k is called wave vector. It becomes

a 4-vector (kα) by identifying

k0 = ω/c (1.59)

as its zero-component, where ω is the angular frequency of the wave. Waves of the form

(1.58) may either propagate in a medium (water, air, shock waves, etc.) or in vacuum (light

waves, particle waves in quantum mechanics). We are interested in the latter case, as the

other defines a preferred inertial frame, namely the one where the medium is at rest. The

phase of the wave is defined by

Φ(x) = Φ(x0, ~x) = k0 x0 − ~k ~x = ω t− ~k ~x . (1.60)
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When (kα) is a 4-vector, it follows that the phase is a scalar, invariant under Lorentz

transformations

Φ′(x′) = k′α x
′α = kα x

α = Φ(x) . (1.61)

That this is correct can be seen as follows: For an observer at a fixed position ~x (note the

term ~k ~x is then constant) the wave performs a periodic motion with period

T =
2π

ω
=

1

ν
, (1.62)

where ν is the frequency. In particular, the phase (and hence the wave) takes identical values

on the two-dimensional hyperplanes perpendicular to ~k. Namely, let k̂ be the unit vector in ~k

direction, by decomposing ~x into components parallel and perpendicular to ~k, ~x = x‖ k̂+~x⊥,

the phase becomes

Φ = ω t− k x‖ , (1.63)

where k = |~k| is the length of the vector ~k. Phases which differ by multiples of 2π give the

same values for the wave W . For example, when we take V0 = 0, the real part of the wave

becomes

Wx = U0 cos(ω t− k x‖)

and Φ = 0, n 2π, n = ±1,±2, ... describes the wave crests. From (1.63) it follows that the

crests pass by our observer with speed ~u = u k̂, where

u =
ω

k
as for Φ = 0 we have x‖ =

ω

k
t . (1.64)

Let our observer count the number of wave crests passing by. How has then the wave (1.58)

to be described in another inertial frame K ′? An observer in K ′ who counts the number of

wave crests, passing through the same space-time point at which our first observer already

counts, must get at same number. After all, the coordinates are just labels and the physics

is the same in all systems. When in frame K the wave takes its maximum at the space-

time point (xα) it must also be at its maximum in K ′ at the same space-time point in

appropriately transformed coordinates (x′α). More generally, this is true for every value of

the phase, which hence has to be a scalar.

As (kα) is a 4-vector the transformation law for angular frequency and wave vector is

just a special case of equations (1.49), (1.50) and (1.51)

k′ 0 = k0 cosh(ζ)− k‖ sinh(ζ) = γ(k0 − βk‖) , (1.65)

k′ ‖ = −k0 sinh(ζ) + k‖ cosh(ζ) = γ(k‖ − βk0) , (1.66)

~k′ ⊥ = ~k⊥ , (1.67)

where the notation k‖ and k⊥ is with respect to the relative velocity of the two frames, ~v.

These transformation equations for the frequency and the wave vector describe the relativistic

Doppler effect. To illustrate their meaning, let us specialize to the case of a light source,
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which recedes along its wave vector from the observer, i.e. ~v ‖ ~k. The equation for the wave

speed (1.64) implies

c =
ω

k
⇒ k = |~k| = ω

c
= k0

and (1.65) becomes

k′ 0 = γ (k0 − β k) = γ (1− β) k0 = k0

√
1− β

1 + β

or

ω′ =
ν ′

2π
= ω

√
1− β

1 + β
=

ν

2π

√
1− β

1 + β
.

Now, c = νλ = ν ′λ′, where λ is the wavelength in K and λ′ the wavelength in K ′.

Consequently, we have

λ′ = λ

√
1 + β

1− β
.

The wave length of light from the receding source is larger as it is for a source at rest. This

is an example of the red-shift, which is of major importance, for instance when analyzing

spectral lines in astrophysics. Using the method of section 1, a single light signal suffices

now to obtain position and speed of a distant perfectly reflecting mirror.

1.1.9 Relativistic dynamics

On a basic level this section deals with the relativistic generalization of energy, momentum

and their conservation laws. So far we have introduced two units, meter to measure distances

and seconds to measure time. Both are related through a fundamental constant, the speed

of light, so that there is really only one independent unit up to now. In the definition of the

momentum a new, independent dimensional quantity enters, the mass of a particle. This unit

is defined through the gravitational law, which is out of the scope of this article. Ideally, one

would like to defines mass of a body just as multiples of the mass of an elementary particle,

say an electron or proton. However, this has remained too inaccurate. The mass unit has so

far resisted modernization and the mass unit

1 kilogram [kg] = 1000 gram [g]

is still defined through a one kilogram standard object a cylinder of platinum alloy which is

kept at the International Bureau of Weights and Measures at Sévres, France.

Let us consider a point-like particle in its rest-frame and denote its mass there by m0.

In any other frame the rest-mass of the particle is still m0, which in this way is defined as

a scalar. It may be noted that most books in particle and nuclear physics simply use m to

denote the rest-mass, whereas many books on special relativity employ the ugly notation

to use m for a mass which is proportional to the energy, i.e. the zero component of the
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energy-momentum vector introduced below. To avoid confusion, we use m0 for the rest

mass.

In the non-relativistic limit the momentum is defined by ~p = m0~u. We give up this

relation now and define ~p as part of a relativistic 4-vector (pα). Consider a particle at rest

in frame K. Then the non-relativistic limit is correct, and ~p = 0. Assume now that frame

K ′ is moving with a small velocity ~v with respect to K. Then ~p ′ = −m0~v has to hold

approximately. On the other hand, the transformation laws (1.49),(1.50),(1.51) for vectors

(note ~p ‖ ~β = ~v/c) imply

~p
′
= γ (~p− ~β p0) ,

where ~p = 0. In the nonrelativstic limit γ β → β and consistency requires p0 = m0 c in the

rest frame, so that we get ~p
′
= −m0 γ~v.

Consequently, for a particle moving with velocity ~u in frame K

~p = m0 γ ~u (1.68)

is the correct relation between relativistic momentum and velocity. From the invariance of

the scalar product, pαp
α = (p0)2 − ~p 2 = p′αp

′α = m2
0c

2,

p 0 = +
√
m2

0c
2 + ~p ′2 (1.69)

follows, which is of course consistent with calculating p0 via the Lorentz transformation law

(1.49). It should be noted that c p0 has the dimension of an energy, i.e. the relativistic

energy of a particle is

E = c p0 = +
√
m2

0c
4 + c2~p2 = m0c

2 +
~p 2

2m0

+ ... , (1.70)

where the second term is just the non-relativistic kinetic energy T = ~p 2/(2m0). The first

term shows that (rest) mass and energy can be transformed into one another [3]. In processes

where the mass is conserved we just do not notice it. At this point it may be noted that

special relativity books like [7] tend to use the notation m = c p0 as definition of the mass,

whereas in particle and nuclear physics the mass of a particle is its rest mass. Together with

(1.70) the first definition yields the equation E = mc2. Here the second definition is favored,

because it defines the mass of a particle as a invariant scalar and the essence of Einstein’s

equation is captured correctly by

E0 = m0 c
2 ,

where E0 is the energy of a massive body (or particle) in its rest frame. The particle and

nuclear physics literature does not use a subscript 0 and m denotes the rest mass.

Non-relativistic momentum conservation ~p1 + ~p2 = ~q1 + ~q2, where ~pi, (i = 1, 2) are the

momenta of two incoming, and ~qi, (i = 1, 2) are the momenta of two outgoing particles,

becomes relativistic energy–momentum conservation:

pα
1 + pα

2 = qα
1 + qα

2 . (1.71)
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Useful formulas in relativistic dynamics are

γ =
p0

m0 c
=

E

m0 c2
and β =

|~p|
p0
. (1.72)

Proof: (p0)2 = c2[(1 − β2)m2
0 + β2m2

0]/(1 − β2) = c2γ2m2
0 and ~p 2 = β2c2γ2m2

0 = β2(p0)2.

Further, the contravariant generalization of the velocity vector is given by

Uα =
dxα

dτ
= γuα with u0 = c , (1.73)

compare the definition of the infinitesimal proper time (1.56). The relativistic generalization

of the force is then the 4-vector

fα =
d pα

d τ
= m0

dUα

dτ
, (1.74)

where the last equality can only be used for particle with non-zero rest mass.

1.2 Maxwell Equations

As before all considerations are in vacuum, as for fields in a medium a preferred reference

system exists. Maxwell’s equations in their standard form in vacuum are

∇ ~E = 4πρ, ∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J, (1.75)

and

∇ ~B = 0, ∇× ~E +
1

c

∂ ~B

∂t
= 0. (1.76)

Here ∇ is the Nabla operator. Note that ∇ ~E = ∇ · ~E, ~a~b = ~a ·~b etc. throughout the script.
~E is the electric field and ~B the magnetic field in vacuum. When matter gets involved one

introduces the applied electric field ~D and the applied magnetic field ~H. Here we follow the

convention of, for instance, Tipler [8] and use the notation magnetic field for the measured

field ~B, in precisely the same way as it is done for the electric field ~E, It should be noted

that this is at odds with the notation in the book by Jackson [5], where (historically correct,

but quite confusingly) ~H is called magnetic field and ~B magnetic flux or magnetic induction.

Equations (1.75) are the inhomogeneous and equations (1.76) are the homogeneous

Maxwell equations in vacuum.

The charge density ρ (charge per unit volume) and the current density ~J (charge passing

through a unit area per time unit) are obviously given once a charge unit is defined through

some measurement prescription. From a theoretical point of view the electrical charge unit

is best defined by the magnitude of the charge of a single electron (fundamental charge unit).

In more conventional units this reads [1]

|qe| = 4.80320420(19)× 10−10 [esu] = 1.602176462(63)× 10−19Coulomb [C] (1.77)
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where the errors are given in parenthesis. Definitions of the electrostatic unit [esu] and the

Coulomb [C] through measurement prescriptions are given in elementary physics textbooks

like [8].

The choice of constants in the inhomogeneous Maxwell equations defines units for the

electric and magnetic field. The given conventions 4πρ and (4π/c) ~J are customarily used in

connection with Gaussian units, where the charge is defined in electrostatic units (esu).

In the next subsections the concepts of fields and currents are discussed in the relativistic

context and the electromagnetic field equations follow in the last subsection.

1.2.1 Fields and currents

A tensor field is just a tensor function which depends on the coordinates of Minkowski space:

T ...α...β... = T ...α...β...(x) .

It is called static when there is no time dependence. For instance ~E(~x) in electrostatics would

be a static vector field in three dimensions. We are here, of course, primarily interested in

contravariant or covariant fields in four dimensions, like vector fields Aα(x).

Suppose n electric charge units are contained it a small volume v, such that we can talk

about the position ~x of this volume. The corresponding electrical charge density at the

position of that volume is then just ρ = n/v and the electrical current is defined as the

charge that passes per unit time through a surface element of such a volume. We demand

now that the electric charge density ρ and the electric current ~J form a 4-vector:

(Jα) =
(
cρ
~J

)
.

Here, the factor c is introduced by dimensional reasons and we have suppressed the space-

time dependence, i.e. Jα = Jα(x) forms a vector field. It is left as a problem to write down

the 4-current for a point particle of elementary charge qe.

The continuity equation takes the simple, covariant form

∂αJ
α = 0 . (1.78)

Finally, the charge of a particle in its rest frame is an invariant:

c2q2
0 = JαJ

α .

1.2.2 The inhomogeneous Maxwell equations

The inhomogeneous Maxwell equations are obtained by writing down the simplest covariant

equation which yields a 4-vector as first order derivatives of six fields. From undergraduate

E&M we remember the electric and magnetic fields, ~E and ~B, as the six central fields of

electrodynamics. We now like to describe them in covariant form. A 4-vector is unsuitable
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as we like to describe six quantities Ex, Ey, Ez and Bx, By, Bz. Next, we may try a rank

two tensor Fαβ. Then we have 4 × 4 = 16 quantities at our disposal. These are now

too many. But, one may observe that an symmetric tensor stays symmetric under Lorentz

transformation and an antisymmetric tensor stays antisymmetric. Hence, instead of looking

at the full second rank tensor one has to consider its symmetric and antisymmetric parts

separately.

By requesting Fαβ to be antisymmetric,

Fαβ = −F βα, (1.79)

this number is reduced to precisely six. The diagonal elements do now vanish,

F 00 = F 11 = F 22 = F 33 = 0 .

The other elements follow through (1.79) from Fαβ with α < β. As desired, this gives

(16− 4)/2 = 6 independent elements to start with.

Up to an over–all factor, which is chosen by convention, the only way to obtain a 4-vector

through differentiation of Fαβ is

∂αF
αβ =

4π

c
Jβ . (1.80)

This is the inhomogeneous Maxwell equation in covariant form. Note that it determines

the physical dimensions of the electric fields, the factor c−14π on the right-hand side

corresponds to Gaussian units. The continuity equation (1.78) is a simple consequence

of the inhomogeneous Maxwell equation

4π

c
∂βJ

β = ∂β∂αF
αβ = 0

because the contraction with the symmetric tensor (∂β∂α) with the antisymmetric tensor

Fαβ is zero.

Let us choose β = 0, 1, 2, 3 respectively, comparison of equation (1.80) with the

inhomogeneous Maxwell equations in their standard form (1.75) yields

(Fαβ) =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (1.81)

Or, in components

F i0 = Ei and F ij = −
∑
k

εijk Bk ⇔ Bk = −1

2

∑
i

∑
j

εkijF ij . (1.82)

Next, Fαβ = gαγgβδF
γδ implies:

F0i = −F 0i, F00 = F 00 = 0, Fii = F ii = 0, and Fij = F ij.
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Consequently,

(Fαβ) =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (1.83)

1.2.3 Four-potential and homogeneous Maxwell equations

We remember that the electromagnetic fields may be written as derivatives of appropriate

potentials. The only covariant option are terms like ∂αAβ. To make Fαβ antisymmetric, we

have to subtract ∂βAα:

Fαβ = ∂αAβ − ∂βAα. (1.84)

It is amazing to note that the homogeneous Maxwell equations follow now for free from

(1.84). The dual electromagnetic tensor is defined

∗Fαβ =
1

2
εαβγδFγδ, (1.85)

and it holds

∂α
∗Fαβ = 0. (1.86)

Proof:

∂α
∗Fαβ =

1

2

(
εαβγδ∂α∂γAδ − εαβγδ∂α∂δAγ

)
= 0.

This first term is zero due to (1.21), because εαβγδ is antisymmetric in (α, γ), whereas the

derivative ∂α∂γ is symmetric in (α, γ). Similarly the other term is zero. The homogeneous

Maxwell equation is related to the fact that the right-hand side of equation (1.84) expresses

six fields in terms of a single 4-vector. An equivalent way to write it is the equation

∂αF βγ + ∂βF γα + ∂γFαβ = 0 . (1.87)

The proof is left as an exercise to the reader.

Let us mention that the homogeneous Maxwell equation (1.86) or (1.87), and hence our

demand that the field can be written in the form (1.84), excludes magnetic monopoles.

The elements of the dual tensor may be calculated from their definition (1.85). For

example,
∗F 02 = ε0213F13 = −F13 = −By,

where the first step exploits the anti-symmetries ε0231 = −ε0213 and F31 = −F13. Calculating

six components, and exploiting antisymmetry of ∗Fαβ, we arrive at

(∗Fαβ) =


0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

 . (1.88)
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The homogeneous Maxwell equations in their form (1.76) provide a non–trivial consistency

check for (1.86), which is of course passed. It may be noted that, in contrast to the

inhomogeneous equations, the homogeneous equations determine the relations with the ~E

and ~B fields only up to an over-all ± sign, because there is no current on the right-hand

side.

A notable observation is that equation (1.84) does not determine the potential uniquely.

Under the transformation

Aα 7→ A′α = Aα + ∂αψ, (1.89)

where ψ = ψ(x) is an arbitrary scalar function, the electromagnetic field tensor is invariant:

F ′αβ = Fαβ, as follows immediately from ∂α∂βψ − ∂β∂αψ = 0. The transformations (1.89)

are called gauge transformation1. The choice of a convenient gauge is at the heart of many

application.

1.2.4 Lorentz transformation for the electric and magnetic fields

The electric ~E and magnetic ~B fields are not components of a Lorentz four-vector, but part

of the rank two the electromagnetic field (Fαβ) given by (1.81). As for any Lorentz tensor,

we immediately know its behavior under Lorentz transformation

F ′αβ = aα
γ a

β
δ F

γδ . (1.90)

Using the explicit form (1.42) of A = (aα
β) for boosts and (1.81), it is left as an exercise for

the reader to derive the transformation laws

~E
′
= γ

(
~E + ~β × ~B

)
− γ2

γ + 1
~β
(
~β ~E

)
, (1.91)

and

~B
′
= γ

(
~B − ~β × ~E

)
− γ2

γ + 1
~β
(
~β ~B

)
. (1.92)

1.2.5 Lorentz force

Relativistic dynamics of a point particle (more generally any mass distribution) gets related

to the theory of electromagnetic fields, because an electromagnetic field causes a change of

the 4-momentum of a charged particle. On a deeper level this phenomenon is related to the

conservation of energy and momentum and the fact that an electromagnetic carries energy as

well as momentum. Here we are content with finding the Lorentz covariant form, assuming

we know already that such the approximate relationship.

We consider a charged point particle in an electromagnetic field Fαβ. Here external

means from sources other than the point particle itself and that the influence of the point

1In quantum field theory these are the gauge transformations of 2. kind. Gauge transformations of 1. kind
transform fields by a constant phase, whereas for gauge transformation of the 2. kind a space–time dependent
function is encountered.
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particle on these other sources (possibly causing a change of the field Fαβ) is neglected.

The infinitesimal change of the 4-momentum of a point point particle is dpα and assumed

to be proportional to (i) its charge q and (ii) the external electromagnetic field Fαβ. This

means, we have to contract Fαβ with some infinitesimal covariant vector to get dpα. The

simplest choice is dxβ, what means that the amount of 4-momentum change is assumed to be

proportional to the space-time length at which the particle experiences the electromagnetic

field. Hence, we have determined dpα up to a proportionality constant, which depends on the

choice of units. Gaussian units are defined by choosing c−1 for this proportionality constant

and we have

dpα = ±q
c
Fαβ dxβ. (1.93)

It is a consequence of energy conservation, in this context known as Lenz’s law, that the

force between charges of equal sign has to be repulsive. This corresponds to the plus sign

and we arrive at

dpα =
q

c
Fαβ dxβ. (1.94)

Experimental measurements are of course in agreement with this sign. But the remarkable

point is that energy conservation and the general structure of the theory already imply

that the force between charges of equal sign has to be repulsive. Therefore, despite the

similarity of the Coulomb’s inverse square force law with Newton’s law it impossible to build

a theory of gravity along the lines of this chapter, i.e. to use the 4-momentum pα as source

in the inhomogeneous equation (1.80). The resulting force would necessarily be repulsive.

Experiments show also that positive and negative electric charges exist and deeper insight

about their origin comes from the relativistic Lagrange formulation, which ultimately has to

include Dirac’s equation for electrons and leads then to Quantum Electrodynamics.

Taking the derivative with respect to the proper time, we obtain the 4-force acting on a

charged particle, called Lorentz force,

fα =
dpα

dτ
=
q

c
FαβUβ. (1.95)

As in equation (1.74) fα = m0 dU
α/dτ holds for non-zero rest mass and the definition of the

contravariant velocity is given by equation (1.73).

Using the representation (1.81) of the electromagnetic field the time component of the

relativistic Lorentz force, which describes the change in energy, is

f 0 =
dp0

dτ
= −q

c

(
~E~U

)
. (1.96)

To get the space component of the Lorentz force we use besides (1.81) equation (1.82) which

give the equality
q

c

3∑
j=1

F ijUj = −q
c

3∑
j=1

3∑
k=1

εijkBkUj
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The space components combine into the well-known equation

~f = q γ ~E +
q

c
~U × ~B (1.97)

where our derivation reveals that the relativistic velocity (1.73) of the charge q and not its

velocity ~v enters the force equation. This allows, for instance, correct force calculations for

fast flying electrons in a magnetic field. The equation (1.97) for ~f may now be used to define

a measurement prescription for an electric charge unit.
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